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Abstract: An efficient stereoselective synthesis of L-imino-C-gulo-
sides is disclosed. Starting from the 2,3:4,6-di-O-isopropylidene-D-
mannopyranose the synthetic pathway involves first a Wittig reac-
tion with CMPP to introduce the carbon at the pseudo-anomeric po-
sition, followed by a Michael reaction under ultrasound activation
to introduce the nitrogen center, and finally a Mitsunobu reaction
for the ring closure leading to the C-iminosugar from the L-series.

Key words: carbohydrates, azasugars, stereoselective, Mitsunobu
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Among carbohydrate mimetics, iminosugars (or azasug-
ars), in which the endocyclic oxygen of the sugar is re-
placed by a nitrogen atom, attract considerable attention.
Nojirimycin, a natural azasugar isolated from Streptomy-
ces filtrate, was found to inhibit a- and b-glucosidase.1

Extended researches have enlarged the range of biological
activities of azasugars and demonstrated that those low-
molecular-weight compounds are powerful inhibitors of a
variety of glycosidases. As a consequence, the therapeuti-
cal potentials of natural or synthetic azasugars are remark-
able.2–5 Compared to azasugars, aza-C-glycosides, which
possess a C-linked aglycon, have shown to improve the
selectivity of the inhibitors. Moreover, they offer the pos-
sibility of further functionalization and/or elongation in
search of improved biological activities, inhibitory prop-
erties depending also on the nature of the substituents on
the nitrogen atom. Since several decades, various synthet-
ic methods focusing on azasugars and aza-C-glycosides
have been developed.6–15 Interest in finding simple and
general ways to synthesize such carbohydrate mimetics
has, of course, been prompted by their remarkable proper-
ties.

The second aspect of our research deals with L-sugars.
While D-sugars are abundant, L-sugars are rare and expen-
sive. Moreover, the latter play important roles in therapy,
and efforts are needed to develop the synthesis of these
valuable sugars.16–21 In this work, we were interested to
find a direct and potentially general approach to aza-C-
glycosides from the L-series using a strategy developed by
our group. Thus, as part of our program devoted to devel-
op new synthetic routes to sugar derivatives, we have re-
cently published a powerful cascade sequence using

(cyanomethylene)trimethylphosphorane (CMMP) for the
synthesis of carba-C-glycosides.22 However, in order to
prepare azahexopyranoses using a comparable approach,
a one-pot reaction could not be envisaged, and the conver-
sion had to be separated into three sequential steps. The
reaction involves (a) a ring-opening process with the aim
to free the hemiacetal hydroxyl group; (b) nucleophile ad-
dition at the anomeric position in order to introduce the ni-
trogen with a variety of substituents, and (c) a ring closure
(Scheme 1 and Scheme 2).

Scheme 1

To access the L-azahexopyranose system, we focused the
methodology on mannose, using 2,3:4,6-di-O-isopropy-
lidene-D-mannopyranose (1) as starting material. In order
to achieve the ring opening, a Wittig reaction between
(cyanomethylene)triphenylphosphorane (CMPP, more
stable than CMMP) and the protected sugar – but free at
the anomeric position – was performed under reflux in
benzene for 3 hours. An improved and easy procedure to
synthesize CMPP was previously described by Wasser-
man et al.23 The equilibrium between the open and cyclic
forms allowed CMPP to react on the aldehyde. The Z-
isomer 2 was obtained as the main product24 (Z/E = 7:3)
with no ring closure being observed during the reaction
nor during the purification.25 In this compound, the conju-
gation of the alkene with the nitrile group allowed an in-
termolecular Michael addition of nucleophiles. In this
case, three different amines were used to explore the reac-
tion as described in Scheme 2. Michael addition of amines
without an activating system gives very low yields, and
many methods have been reported in the literature such as
the use of amberlyst 15,26 b-cyclodextrin,27 cerium(IV)
ammonium nitrate,28 borax,29 and ultrasound irradiation.30

Our thought was to find a better procedure in order to
achieve the reaction under more convenient conditions
with a low rate of byproducts and subsequent ease of pu-
rification. Therefore, ultrasound activation seemed highly
promising (Scheme 2). The Z-isomer and the amine were
placed in an ultrasound bath for 10 hours to give exclu-
sively (according to the amine involved in the reaction)
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compounds 3, 4, and 5 in high yields.31 These resulting
compounds presented a free hydroxy group on the pseu-
do-C5 position and a secondary amine at the pseudo-
anomeric center. At this stage, the stereochemistry of C1
could not be assigned. The two entities were engaged in
an intramolecular Mitsunobu reaction which allowed the
ring closure. The substitution of the activated hydroxyl
group by the amine proceeded with a complete inversion
of configuration. Thus, the L-enantiomer, a L-gulose de-
rivative, was selectively obtained in 70% yield
(Scheme 2) in each case.32 It is worth pointing out that
compounds 6, 7, and 8 are a-anomers, as indicated by
NMR experiments (J1–2 close to 2 Hz). This implies that
compounds 3, 4, and 5 possess an S-configuration for C1.

Scheme 2

In summary, we have developed a simple and efficient
stereoselective synthesis of aza-C-gulosides of the L-
series starting from a D-sugar. Compared to published
methodologies, our strategy allows in few steps the prep-
aration of a L-iminosugar with a variety of substituents on
the nitrogen atom and an aglycon moiety that can be mod-
ified. The application of this methodology is currently be-
ing extended to other monosaccharides, with emphasis on
the preparation of new heterosugars.
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compounds 3, 4, or 5 as colorless oils in 80% yield.
Compound 3: Rf = 0.11 (PE–Et2O, 8:2). 1H NMR (400 MHz, 
acetone-d6): d = 7.46–7.19 (m, 5 H, Hc, Hd, He), 4.48 (dd, 
J3–2 = 6.29 Hz, J3–4 = 1.55 Hz, H3), 4.28 (dd, J2–1 = 8.85 Hz, 
J2–3 = 6.29 Hz, H2), 4.22 (d, JOH–5 = 5.88 Hz, OH), n0 = 3.82 
(ABq, 2 H, nA = 4.03, nB = 3.87, Dn = 64.2 Hz, JAB = 14.0 
Hz, Ha), 3.79–3.68 (m, H5, H6a), 3.63–3.50 (m, H6b), 3.61 
(dd, J4–5 = 8.93 Hz, J4–3 = 1.57 Hz, H4), 3.33 (ddd, J1–2 = 8.92 
Hz, J1–7b = 5.18 Hz, J1–7a = 4.49 Hz, H1), 2.81 (dd, J7a–7b = 
17.39 Hz, J7a–1 = 4.44 Hz, H7a) 2.58 (dd, J7b–7a = 17.40 Hz, 
J7b–1 = 5.29 Hz, H7b), 1.48, 1.33, 1.23, 1.20 (4 s, 12 H, H10, 
H11, H13, H14). 

13C NMR (100 MHz, acetone-d6): d = 142.55 
(Cb), 130.07 and 129.87 (2 C, Cc, Cd), 128.55 (Ce), 119.67 
(C8), 110.31 (C9), 99.82 (C12), 80.65 (C2), 75.79 (C3), 74.44 
(C4), 66.48 (C6), 63.92 (C5), 53.73 (C1), 52.16 (Ca), 29.98, 
27.75, 27.20, 20.03 (4C, C10, C11, C13, C14), 22.03 (C7). MS 
(ESI+): m/z = 391.13 [M + H]+, 413.13 [M + Na]+. MS (ESI–

): m/z = 425.46 [M + Cl]–.
Compound 4: Rf = 0.28 (Et2O). 1H NMR (400 MHz, 
acetone-d6): d = 4.48 (dd, J3–2 = 6.26 Hz, J3–4 = 1.56 Hz, H3), 
4.20 (dd, J2–1 = 8.53 Hz, J2–3 = 6.26 Hz, H2), 3.84–3.67 (m, 
H4, H5, H6a), 3.64–3.56 (m, H6b), 3.28 (ddd, J1–2 = 8.52 Hz, 
J1–7b = 5.54 Hz, J1–7a = 4.52 Hz, H1), 2.73 (dd, J7a–7b = 17.31 
Hz, J7a–1 = 4.53 Hz, H7a), 2.55 (dd, J7b–7a = 17.32 Hz, J7b–1 = 
5.54 Hz, H7b), 2.78–2.70 (m, H9a), 2.68–2.61 (m, H9b), 1.49–
1.32 (m, H10, H11), 1.50, 1.48, 1.33, 1,32 (4 s, 12 H, H14, H15, 
H17, H18), 0.91 (t, J12–11a = 7.20, J12–11b = 7.20 Hz, H12). 

13C 
NMR (100 MHz, acetone-d6): d = 119.83 (C8), 110.15 (C13), 
99.91 (C16), 80.26 (C2), 75.83 (C3), 74.45 (C4), 66.57 (C6), 
64.07 (C5), 55.36 (C1), 48.30 (C9), 34.09 (C10), 30.15, 27.75, 
27.13, 20.45 (4 C, C14, C15, C17, C18), 21.95 (C11), 15.25 
(C12). MS (ESI+): m/z = 357.31 [M + H]+, 379.33 [M + Na]+. 
MS (ESI–): m/z = 355.36 [M – H]–, 391.28 
[M + Cl]–.
Compound 5: Rf = 0.08 (PE–Et2O, 9:1). 1H NMR (400 MHz, 
acetone-d6): d = 5.90 (dddd, J10–11trans = 17.29 Hz, J10–11cis = 
10.33 Hz, J = 6.15 Hz, J = 5.19 Hz, H10), 5.25 (qd, J11trans–10 = 
17.29 Hz, J = 1.80, 1.80, 1.79 Hz, H11trans), 5.08 (ddd, J11cis–

10 = 10.34 Hz, J = 3.42 Hz, J = 1.48 Hz, H11cis), 4.48 (dd, 
J3–2 = 6.28 Hz, J = 1.57 Hz, H3), 4.24 (dd, J = 8.68 Hz, J2–3 = 
6.27 Hz, H2), 3.82–3.55 (m, 4 H, H4, H5, H6a, H6b), 3.47–3.29 
(m, 3 H, H1, H9a, H9b), 2.75 (dd, J7a–7b = 17.35 Hz, J = 4.49 
Hz, H7a), 2.55 (dd, J7b–7a = 17.35 Hz, J = 5.41 Hz, H7b), 1.48, 
1.32 (2 d, 12 H, H13, H14, H16, H17). 

13C NMR (100 MHz, 
acetone-d6): d = 139.48 (C10), 119.76 (C8), 116.70 (C11), 
110.26 (C12), 99.90 (C15), 80.52 (C2), 75.85 (C3), 74.52 (C4), 
66.54 (C6), 63.96 (C5), 53.15 (C1), 51 (C9), 30.16, 27.74, 
27.74, 20.34 (C13, C14, C15, C17), 22.26 (C7). MS (ESI+): 
m/z = 341.27 [M + H]+, 363.29 [M + Na]+.

(32) Typical Procedure for the Synthesis of Compounds 6–8
Compounds 3, 4, or 5 (1 equiv) and Ph3P (2 equiv) were 
dissolved in a minimum amount of dry toluene. The mixture 
was stirred under argon at r.t. DEAD (2 equiv, 2.56 mmol, 
1.2 mL) was added dropwise, and the mixture was stirred 
further 3 h. The crude product was purified by chromatog-
raphy on SiO2 (PE–Et2O, 7:3) to afford compounds 6, 7, or 
8 in 70% yield.

Compound 6: Rf = 0.2 (PE–Et2O, 7:3); [a]D +5.86 (c 1, 
HCCl3, 25 °C). 1H NMR (400 MHz, acetone d6): d = 7.42 
(m, 2 H, Hc), 7.30 (m, 2 H, Hd), 7.23 (m, 1 H, He), 4.43 (dd, 
J3–4 = 2.5 Hz, J3–2 = 8.0 Hz, H3), 4.25 (dd, J4–3 = 2.7 Hz, 
J4–5 = 5.6 Hz, H4), 4.23 (dd, J2–1 = 2.1 Hz, J2–3 = 8.1 Hz, H2), 
n0 = 3.99 (ABq, 2 H, nA = 4.13, nB = 3.85, Δn = 112.3 Hz, 
JAB = 14.3 Hz, Ha), 3.85 (ddd, J1–2 = 2.2 Hz, J1–7b = 7.3 Hz, 
J1–7a = 7.4 Hz, H1), 3.38 (dd, J6a–5 = 6.1 Hz, J6a–6b = 11.7 Hz, 
H6a), 3.33 (dd, J6b–5 = 6.4 Hz, J6b–5 = 11.8 Hz, H6b), 2.99 (dd, 
J7a–1 = 7.7 Hz, J7a–7b = 17.0 Hz, H7a), 3.00 (ddd, J5–6a = 6.3 
Hz, J5–6b = 6.4 Hz, J5–4 = 5.7 Hz, H5), 2.91 (dd, J7b–1 = 7.2 
Hz, J7b–7a = 17.0 Hz, H7b), 1.61 (s, CH3), 1.38 (d, J = 0.4 Hz, 
CH3), 1.30 (s, CH3), 1.30 (s, CH3). 

13C NMR (100 MHz, 
acetone-d6): d = 143.17 (Cb), 130.49, 129.94 (Cortho/meta), 
128.71 (Cpara), 120.32 (C8), 110.60 (C9), 101.23 (C12), 75.99 
(C3), 73.64 (C4), 65.87 (C2), 63.77 (C6), 56.87 (Ca), 56.15 
(C5), 53.49 (C1), 27.67, 27.25, 24.44, 22.68 (C10, C11, C13, 
C14), 19.81 (C7). MS (ESI+): m/z = 373.32 [M + H]+, 395.28 
[M + Na]+, 411.18 [M + K]+, 767.57 [2 M + Na]+.
Compound 7: Rf = 0.6 (PE–Et2O, 8:2); [a]D +6.52 (c 1, 
HCCl3, 25 °C). 1H NMR (400 MHz, acetone-d6): d = 4.38 
(dd, J3–4 = 26.0 Hz, J3–2 = 8.0 Hz, H3), 4.26 (dd, J4–3 = 2.6 
Hz, J4–5 = 5.6 Hz, H4), 4.15 (dd, J2–1 = 2.2 Hz, J2–3 = 8.0 Hz, 
H2), 3.78 (dd, J6a–5 = 6.2 Hz, J6a–6b = 11.7 Hz, H6a), 3.69 
(ddd, J1–2 = 2.2 Hz, J1–7a = 7.7 Hz, J1–7b = 8.4 Hz, H1), 3.56 
(dd, J6b–5 = 6.6 Hz, J6b–6a = 11.7 Hz, H6b), 3.05 (q, J5–4 = 
J5–6a = J5–6b = 6.1 Hz, H5), 2.86–2.64 (m, 4 H, H7a, H7b, H9a, 
H9b), (s, 3 H, CH3), 1.41–1.20 (m, 4 H, H10a, H10b, H11a, H11b), 
1.47, 1.36, 1.33, 1.30 (4 s, 12 H, H14, H15, H17, H18). 

13C 
NMR (100 MHz, acetone-d6): d = 120.20 (C8), 110.46 (C13), 
101.13 (C16), 75.97 (C3), 73.47 (C2), 65.69 (C4), 64.57 (C6), 
57.07 (C5), 53.58 (C1), 52.66 (C9), 35.35 (C10), 27.60, 27.08, 
24.47, 22.85 (C14, C15, C17, C18), 21.60 (C11), 19.81 (C7), 
15.38 (C12). MS (ESI+): m/z = 339.36 [M + H+], 361.26 
[M + Na]+, 699.47 [2 M + Na]+.
Compound 8: Rf = 0.28 (PE–Et2O, 8:2); [a]D +8.34 (c 1, 
HCCl3, 25 °C). 1H NMR (400 MHz, acetone-d6): d = 5.76 
(dddd, J10–11trans = 17.19 Hz, J10–11cis = 10.07 Hz, J10–9b = 
7.99 Hz, J10–9a = 4.40 Hz, H10), 5.15 (dtd, J11trans–10 = 17.21 
Hz, J = 2.03 Hz, J11trans–11cis = 1.11 Hz, H11trans), 5.00 (dtd, 
J10–11cis = 10.07 Hz, J = 1.88 Hz, J11cis–9a = 1.87 Hz, J11cis–

11trans = 0.92 Hz, H11cis), 4.37 (dd, J3–2 = 7.94 Hz, J3–4 = 2.60 
Hz, H3), 4.25 (dd, J4–5 = 5.27 Hz, J4–3 = 2.60 Hz, H4), 4.17 
(dd, J2–3 = 7.95 Hz, J2–1 = 2.12 Hz, H2), 3.78 (td, J = 8.17 
Hz, J1–2 = 1.94 Hz, J = 1.94 Hz, H1), 3.74 (dd, J6a–6b = 11.82 
Hz, J = 5.63 Hz, H6a–6b), 3.60 (tdd, J9a–9b = 14.88 Hz, J9a–10 = 
4.12 Hz, J9a–11cis = 1.87 Hz, J = 1.87 Hz, H9a), 3.57 (dd, 
J6b–6a = 11.76 Hz, J = 5.85 Hz, H6a–6b), 3.26 (tdd, J9b–9a = 
14.88 Hz, J9b–10 = 7.99 Hz, J = 1.04, 1.04 Hz, H9b), 2.99 (q, 
J5–4 = 5.59 Hz, J5–6a = 5.59 Hz, J5–6b = 5.59 Hz, H5), 2.84 (d, 
J = 0.65 Hz, H7a), 2.82 (s, H7b), 1.50, 1.37, 1.34, 1.30 (4 d, 
12 H, J = 0.58 Hz, H13, H14, H16, H17). 

13C NMR (100 MHz, 
acetone-d6): d = 140.93 (C10), 120.04 (C8), 116.88 (C11), 
110.53 (C12), 101.04 (C15), 75.88 (C3), 73.75 (C2), 66.04 
(C4), 64.51 (C6), 55.81 (C9), 55.67 (C5), 53.38 (C1), 28.07, 
27.20, 24.50, 22.38 (C14, C13, C16, C17), 19.77 (C7). MS 
(ESI+): m/z = 323.27 [M + H]+, 345.21 [M + Na]+, 361.20 
[M + K]+.
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