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Abstract—By using 4- and 6-acyl remote group participation, a galactosyl phosphite donor exhibits exceptionally high a-anomeric
selectivity for primary and secondary hydroxyl acceptors. It was observed that temperature played an important factor in
glycosylation. The higher a-selectivities were obtained at higher reaction temperatures. © 2002 Elsevier Science Ltd. All rights

reserved.

Although numerous complex carbohydrates occur in
nature,'? saccharide structures and functions have been
minimally studied, mainly due to the difficulty of syn-
thesizing oligosaccharides.>” The synthesis of 1,2-cis
a-glycosides and B-mannopyranosides,® for example,
still represents a significant challenge. Since many car-
bohydrate antigens, such as o-galactosyl ceramide
(Galal-Ceramide, a-GalCer),” a-Gal epitope (Galo(1 —
3)Gal), and P* antigen (Galoa(1—4)Gal), contain a 1,2-
cis-a-galactosyl glycosidic bond, the development of
new and more efficient methods to synthesize 1,2-cis
glycosidic bonds is of current interest.

It has been shown®!%!2 that protecting groups on sug-
ars affect the reaction rate and stereochemical outcome
of glycosylation. Although highly a-selective galactosyl-
ation using a thiol galactosyl donor with remote elec-
tron-donating group participation at C-4 has been
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Figure 1. Galactosyl donors used in this study.

* Corresponding author. Tel.: 886-2-27898648; fax: 886-2-27835007;
e-mail: cclin@chem.sinica.edu.tw

reported,'*!* a complicated solvent system was needed
to ensure good selectivities.!* In addition, enhanced
a-selectivity in galactosylation was achieved by employ-
ing the 6-O-acetyl participation strategy and phosphite
leaving group.'® In certain cases, glycopyranosyl phos-
phites also showed better a-selectivity in glycosyla-
tion,'®*!”  but using commercially unavailable
2,6-di-tert-butylpyridinium iodide (DTBPI) as the pro-
motor. As part of our continuing efforts in the synthe-
sis of carbohydrate antigens as killer T-cell activators,
we found that the 2,3-O-dibenzyl-4,6-O-dibenzoyl
galactosyl phosphite donor 1 (Fig. 1) served as an
excellent a-selective galactosyl donor under standard
glycosylation reaction conditions. Compound 1 con-
tains 4- and 6-acyl groups which may exhibit remote
group participation, through the intermediates shown
in Fig. 2, resulting in high a-anomeric selectivity.

Since aryl thiol glycosides are commonly used as o
selective donors, we first examined glycosylation of
acceptor 5 using 2 (Fig. 3). The reaction gave a good
yield but low selectivity (Table 1, entry 2). In order to
increase the a-selectivity, we introduced the remote
group participation strategy and changed the protecting
groups of the 4- and 6-hydroxyl groups of 2 to the
benzoyl group (derivative 3). Consequently, the replace-
ment showed a significant improvement of a-selectivity
from o:f=2:1 to 9:1 (entry 3). To investigate further
whether the leaving group at the anomeric center would
influence the a-selectivity, the thiocresol group of 3 was
replaced by trichloroimidate and dibenzyl phosphite to
give 4 and 1, respectively. Surprisingly, coupling of an
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Figure 2. Proposed 4- and 6-acyl remote participation.

o,/B mixture (a:p=6:1) of the phosphite donor 1 with 5
gave only the a-glycosylation product (entry 1), while
using the imidate donor 4 (the o form) gave a mixture
of products (a:p=1:10, entry 4). The results of entries 1
and 4 showed that the glycosylation mechanism of
phosphite donor 1 was Sy1 like while that of imidate
donor 4 was more Sy2 like. These results encouraged us
to investigate further the scope and limitation of phos-
phite donor 1 using a number of acceptors (Fig. 3).

As shown in Table 1, for secondary hydroxyl acceptors,
phosphite donor 1 provided excellent «-selectivities
(entries 5-9). It is worth pointing out that the 3-OH is
more reactive than the 4-OH in the galactose case, thus
we obtained disaccharide 18 in high yield and selectiv-
ity. However, when primary hydroxyl acceptors were
used, the a-selectivity decreased, except with acceptor 5
(entries 1, and 10-12). The good a-selectivity of the
primary acceptor 5 may be a result of an anomeric
effect together with the m—m interaction between the
2-Bn of 1 and the Fmoc of 5 resulting in a nucleophilic
approach from the a-face to give an a-glycosidic bond.
This phenomenon has also been observed in the cases
of fucosylation of tribenzyl fucosyl phosphite with
Fmoc-Thr-OBzl.!>!® 1t should be noted that all the
above mentioned glycosylations were performed at
—15°C except those of entries 11 and 12. Interestingly,
the selectivity of the galactosylation using donor 1 was
temperature dependent. The higher a-selectivities were
obtained at higher reaction temperatures. The tempera-
ture effect of entry 11 implied that the nucleophilic
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Figure 3. Glycosylation acceptors used in this study.
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addition to the phosphite donor becomes more like
kinetic control at low reaction temperatures (—78°C),
resulting in inversion of the reaction center for the
major product. When the temperature is increased, the
remote group participating effect is enhanced and thus
gives better a-selectivity. The temperature effect was
further demonstrated by running the glycosylation at

Table 1. ?

Entry Donor Aceptor Product (Yield, o:f)

1 1 5 14 95% (o only) BZO -0Bz
2 2 5 14 93% (21) Bno%g
3 3 5 14 89% (9:1) Bno),
4 4 5 14 89% (1:10)
FmocHN OAllyl
BzO OBZ
5 1 6 15 73% (o only?noo@%m/sphcm
1t
BzO OBz
Ny
BnO OBn
6 1 7 16 62% (0: only) B”Sgc,é&sphCHs
7 A 8 17 76% (cconly) oo
BnO SPhCH3
BzO
8 1 9 18 84% (11:1) B“Ogﬁ EOB”
BnoOMe
BzO OBz
9 1 10 19 71% (9:1) \\L%
10 1 1 20 80% (s.nmég NHBog
BI’\OO\/?\)M 29
Bnogg\
11 12 21 85% (6.2:1, 0°C) OB”Oo
(6:1, -15°C) o)
(1:2, -78°C) /CG
BzO OBz
BnO&‘
12 1 13 22 74% (5:1, -15°C) HOPO

(12:1, rt)
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room temperature as shown in entry 12. In comparison
with the —15°C reaction, the a-selectivity at room tem-
perature is significantly increased. Since the thiocresol
leaving group is present on the disaccharides 15-17"
and 21, they can serve as disaccharide donors for the
next glycosylation. Compound 17 was obtained in
excellent a-selectivity and could be used as a synthon of
P¥ and Globo H antigens. Compounds 20 and 14'° can
be used as precursors for the synthesis of NK T cell
activators, a-GalCer®2?%2?! and its analogs.

In brief, we have demonstrated that galactosyl phos-
phite 1 is an excellent donor for a-galactosylation. Its
superior selectivity may be due to 4- and 6-acyl group
participation and m—m interaction between the acceptor
and the donor. Glycosylation with this donor for the
synthesis of NK T cell activators is underway.

General procedure for glycosylation

A mixed solution of 1 (1.33 g, 1.63 mmol) and 5 (0.55
g, 1.48 mmol) in CH,Cl, (20 mL) in the presence of
molecular sieves (2.4 g) was stirred at rt for 30 min, and
then cooled to —15°C for another 30 min. TfOH (25.9
pL, 0.30 mmol) was added, and the mixture was stirred
at —15°C under argon. After the acceptor disappeared
on TLC, the mixture was filtered; the filtrate was
concentrated and the residue was partitioned between
ethyl acetate and NaHCO; solution. The aqueous layer
was extracted with ethyl acetate. The combined organic
layer was dried over MgSO,, and concentrated. The
resulting residue was checked by NMR to determine
the ratio of o and B anomers, and purified on a silica
gel column to give 95% yield of the product.
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