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An oxidative enol ether rearrangement was the key methodology in the construction of steroid-spiroketal-RGD peptides. Biological studies

demonstrated potent integrin CD11b/CD18 antagonistic effects.

Steroids are often conjugated to other building blocks that
modulate their biological activity.! For example, carbohy-
drates are attached to the steroid A-ring hydroxyl groups and
D-ring side chains, and the resulting hybrid molecules have
improved solubility and modified physicochemical properties
as well as distinct biological functions. Synthetic sugar-
steroid conjugates have been shown to target phospholipid
membranes.” Peptide-steroid conjugates have been applied
as artificial proteolytic enzymes,’ mimics of cationic anti-
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biotics,* and synthetic receptors for oligopeptides (Figure
1).° The steroid skeleton is rearranged into a spiroketal
moiety in hippurin-1,° cephalostatins, and ritterazine M,’
which show potent reversal of multidrug resistance and
anticancer activities. A library approach toward the synthesis
of peptidomimetic spirostane hybrids took advantage of the
four-component Ugi reaction,® and macrocyclic hybrid
structures were assembled with the goal to construct chiral
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Figure 1. Selected natural and designed steroid-peptide, steroid-
amino acid, and steroid-spiroketal hybrid structures.”~”

host molecules.” However, conjugates of spiroketal modified
steroids to peptides or peptide mimetics have not yet been
explored; we hypothesizd that these chimeras could dem-
onstrate interesting membrane affinities and receptor recogni-
tion properties.

Scheme 1. Oxidative Rearrangement of Alkyl Enol Ethers
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We have recently demonstrated an oxidative rearrangement
of enol ethers to lactones and spiroketal esters.'® Our
methodology allows for a rapid formation of these common
structural subunits (Scheme 1). We now report an extension
of this methodology for the construction of a small library
of steroid-spiroketal-peptide triple hybrid structures that were
designed to anchor the RGD motif in the cell membrane.
The tripeptide sequence Arg-Gly-Asp (RGD)'! is widely
used for cell adhesion studies, as it is recognized by many

integrins, including ay/3; (Kg &~ 107° M).'? Several integrin
antagonists based on the RGD sequence have been designed
for applications in the control of angiogenesis, tumor cell
metastasis, osteoporosis, and other diseases. 13 However, the
development of selective integrin antagonists still constitutes
a major challenge in RGD mimetic design.

Scheme 2. Steroid Spiroketal o-Alkoxy Ester Synthesis
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Our synthesis of the steroid spiroketal carboxylic acid §
began with commercially available epi-androsterone (1).
Treatment of 1 with 5-lithio-2,3-dihydrofuran followed by
the acidic Dowex 50X initiated a pinacol-type'* rearrange-
ment (Scheme 2). Enolization and O-methylation of ketone
2 was performed with KHMDS and Me,SO; in a 4:1 mixture
of THF and DMF. Other conditions led to significant
amounts of C-methylation. The reaction of the enol ether 3
with m-CPBA buffered with Na,HPO, produced the penta-
cyclic spiroketal ester 4 as a single diastereomer after basic
workup.'> Saponification of 4 with KOH provided carboxylic
acid 5, and the X-ray structure of amide 6 confirmed the
structural assignment of the spiroketal portion of 5.

A microwave Fmoc-SPPS protocol'® was selected for the
preparation of the chimera. However, when Wang resin was
used, cleavage of the peptide from the solid support by
aminolysis with benzylamine'? did not provide the desired
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Scheme 3. Solid-Phase Synthesis of Steroid-Peptide Chimeras
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product. Alternative aminolysis protocols, including benzyl-
amine-catalytic sodium cyanide,'” lithium aluminum ben-
zylamide,'® and benzylamine-dimethylaluminum complex, '
were also unproductive. In contrast, the preparation of

Scheme 4. Solid-Phase R-X-D Triple Hybrid Library Synthesis
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chimera 13 succeded in good overall yield on FMPB-AM
Rink amide resin (Scheme 3).20-2!

Reductive amination of aldehyde 7 with benzylamine was
followed by iterative coupling of 8 under microwave
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Table 1. Structures of Variable Amino Acid Segments and
Steroid-Spiroketal-Tripeptide (R-X-D) Products
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“ All products were synthesized in a manner analogous to the procedure
shown in Scheme 3. ? Isolated yield after RP-HPLC. ¢ SPPS was conducted
on 0.05 mmol of resin as opposed to 0.1 mmol for all other entries.

conditions®* to suitably N- and side chain protected amino
acid building blocks. After conjugation of tripeptide chain
11 to acid 5, the resin was cleaved under global deprotection
conditions to provide the chimera sequence 13. This product
was purified by RP-HPLC and submitted to a cell-based
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adhesion assay for high-throughput screening of regulators
of the leukocyte-specific integrin CD11b/CD18, a validated
therapeutic target for inflammatory diseases.?*~**

In addition to 13, additional RGD encoded triple hybrid
chimeras were prepared for biological evaluations as well
as for exploring the scope of our synthetic strategy (Scheme
4, Table 1). Coupling steps were conducted in the microwave
at 40 W for 5 min at 70 °C. The coupling with Fmoc-
Asp(O'Bu)-OH was repeated with 2.5 equiv of acid to ensure
complete loading. For other acids, a single acylation with
3.5 equiv of Fmoc-amino acid was used, and 2.0 equiv of 5§
were employed in the final amide bond formation. The
cleavage of the Fmoc groups with 20% piperidine in DMF
also took advantage of microwave heating (50 W, 3 min, 50
°C). Products were released from the resin by treatment with
a TFA cleavage cocktail at room temperature for 2 h.

In the design of our chimera, we hypothesized that the
steroid scaffold would anchor the peptide in the membrane,
the spiroketal linker would rigidly project the peptide strand
and provide selectivity, and the replacement of the glycine
residue in the RGD sequence would induce features such as
conformational preorganization, rigidity, S-turn stabilization,
and resistance toward proteolytic degradation. Thus, we
synthesized both L- and D-proline containing scaffolds 15
and 17. Similarly, the Fmoc-protected enantiomeric -amino-
o.,5-cyclopropyl acids 18 and 20 were used to introduce turn
structures.” 3-Amino acids also have a profound effect on
secondary sturctures and are finding increasing applications
in peptide mimicry.?® The B-amino acids 22 and 24%7 were
readily inserted into the triple hybrid scaffold. Finally, for
cellular localization studies, we prepared the fluorescein
labeled derivative 27 by inserting the modified Fmoc-lysine
residue 26”® into the R-X-D tripeptide sequence.

The biological evaluation®* of all triple hybrid RGD
mimics revealed no agonist activities. However, two com-
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displayed potent antagonistic effects and ICsy’s of 10.9 and
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6.5 uM, respectively. These assay data validated our
hypothesis and provide the basis for planned expansions of
the chimera motif for integrin antagonist design.

In conclusion, we have successfully extended our oxidative
enol ether rearrangement methodology toward the construc-
tion of steroidal RGD mimics. These chimeras contain
structural elements from three major classes of natural
products, i.e., steroids, spiroketals, and peptides. The biologi-
cal studies provided evidence for potent integrin CD11b/
CD18 antagonistic effects for the glycine-containing 13 and
its corresponding N-debenzylated primary amide analog.
Further work will mainly focus on determining selectivity
and binding sites for these and related antagonists.
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