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ABSTRACT

The sequential addition of 5-methylcyclopentyllithium and propynyllithium to diisopropyl squarate results in the efficient formation of a
functionalized angular triquinane having two of its five-membered rings substituted precisely as in the target sesquiterpene. Only seven

additional steps are then required to access pentalenene.

Pentaleneneljj, whose isolation fronstreptomyces griseo-
chromogenesvas reported by Seto and Yonehara in 1980,

thetic interest. Since the first de novo approach to pental-
enene reported by our group in 1982jmost 30 totat*°

is the parent hydrocarbon of the pentalenone antibiotic family and formal synthesés?26 of 1 have been defined. Some of

of fungal metabolites. The unusual tricyclo[6.3:F)9
undecane structural motif common taand its oxygenated
congeners has elicited considerable syntRetitd biosyn-
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the more effective means for accessing this sesquiterpenoid
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include thermal and photochemical cycloadditiénhalt”

transannular cyclizatiorfs} tandem radical-mediated ring Scheme 1
closures®®metal-catalyzed transformations @iCo,? Fe??
Ni%9), and the use of cyclopropane and cyclobutane inter-
mediates:10:16 -Pro o 1. Li—é

In making use of the extensive bond reorganization that % G ———
accompanies the so-called “squarate ester cas@ades, i-Pro o 2=t
previously found it possible to apply this deep-seated
rearrangement to the expeditious synthesis of the naturally
occurring linear triquinanes hypnophili2)(?8-2° coriolin,?®
and ceratopicanol 3§.2° Presently, we describe the first -Pro Oi-Pr i-PrQ  OF-Pr
successful undertaking that transforms diisopropyl squarate 0-_/—\_ o- O/ \.O
(4)*°in an equally convenient and concise manner into the P
alternative angularly fused architecture, as is present, for Il It
example, inl. 6 7

FPrO  Oi-Pr i-PrQ  Oi-Pr

89 RN

8
) . i-PrO  OH
The pentalenene framework features a bridged spirane
arrangement of three cyclopentane rings. To arrive at this -PrO =
carbocyclic skeleton from the direction df it becomes 0/\/
necessary to achieve regioselective protonation within a 10

strained 1,2,4,6-cyclooctatetraene intermediate sueh&s
this end, we found it productive to treat first with
5-methylcyclopentenyllithium and then propynyllithium  constituent triple bond in the second (now 8onrotatory)
(Scheme 1). Under these circumstances, trans addition likelyelectrocyclization proceeds more slowly and delivers the
predominates to furnish as the principal bis-adduétThe  strained intermediat8.3* Beyond that, the presence of a
doubly charged nature & and the strong donor character methyl group on the cyclopentene subunit should sufficiently
of the two oxido anions combine to promote outward jmpede the rate of ring closure Gbecause of its placement
conrotatory movement of the oxygen atoms during opening on the interior of the coil in this ca$é Comparable kinetic
of the cyclobutene ring retardation should not accompany the conversiof tuf 8,
Equilibration between the two helical dienolatsand 7 thereby resulting in good overall stereochemical control at
so formed was anticipated to be facifeRarticipation of the  this stage. At the experimental levél) was isolated in 76%
yield following acidification and transannular aldolization
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guarding against possible overreduction. With rapid arrival
Scheme 2 at13, it was now possible to undertake thg-dimethylation
of its enolate anion. This transformation was best achieved

Li, NH, with pqtas_siumtert—putoxide. gnd methyl iodide in that
MeOH contamination involving the difficultly separable monomethyl
(68%) derivative was not seen.

The doubly neopentylic nature of the carbonyl group in
14 brought an assortment of challenges to the fore. For

L NH example, no reaction was observed whenever nucleophilic
PO “PhCOONA attack at the sphybridized carbon was a matter of consid-
at (84%) eration. Two such processes include attempted Wolff

13. R = H—, KO®Bu, Kishner and LiAIH/THF reduction at elevated temperature.
12 14, R=Me:| Mel In contrast, dissolving metal reduction was well suited to
(89%) the task, providing alcohdl5 in near-quantitative yield. Once
its derived acetat&6 was reached, recourse to-O bond
cleavage with sodium metal in HMPAgave pentalenene
Li, NHg RO. %, Na (1), which was spectroscopically identical to an authentic
T©5%) \ awea | sample®
(72%) 1 The use of the squarate ester cascade as a device for rapid
assembly of a naturally occurring angular triquinane has thus
15,R=H 3:,2,2,’: been demonstrated. The hydrocarbon nature of the target also
16, R =Ac=— (ggo) provided a forum for evaluating the power of dissolving
metal reduction. Three distinctively different transformations
involving Li/NH3 can be identified at various stages of the
11 was reduced with approximately 50 mol equiv of lithium synthesis, this routing making possible an economic eight-
metal in liquid ammonia at-78 °C and excess methanol step sequence to arrive atfrom 4.
was slowly added over 1 h, the transfer of six electrons was
made possible ant? was formed in 68% yield® Although
conditions for cleavage of the second isopropoxy substituent
in this step were not found, the independent dissolving metal Supporting Information Available: Experimental details
reduction of12 did lead efficiently to ketond.3. Sodium and characterization data for all compounds. This material
benzoate was invariably introduced prior to workup for the is available free of charge via the Internet at http:/pubs.acs.org.
purpose of quenching the excess lithium reagent, thus
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