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Abstract: Utilising a Bryce-Smith–Gilbert photoamination of ben-
zene as a key step, a synthesis of (±)-conduramine E was carried
out.  A highly regioselective dihydroxylation of a cyclic diene was
effected utilising Sharpless AD-mix-b.

Key words: Bryce-Smith–Gilbert photoamination, (±)-condur-
amine E, diastereocontrolled synthesis

We have recently reported on the use of formamide 1, pre-
pared via Bryce-Smith–Gilbert photoamination of ben-
zene, as a precursor for the enantioselective synthesis of
(–)-fortamine.1,2 The synthetic potential of this crystalline
compound has now been further realized, forming the
foundation for a synthesis of (±)-conduramine E
(Scheme 1).3

Scheme 1 Proposed synthesis of conduramine E

Thus, beginning from formamide 1,1 bromonium ion in-
duced cyclisation was investigated to install the relative
stereochemistry between the adjacent carbon–nitrogen
and carbon–oxygen bonds required for conduramine E.
However, contrary to expectation, treatment of 1 with two
equivalents of N-bromosuccinimide (NBS) delivered a
49% yield of oxazolidinone 2, presumably via hydration
of the intermediate 3 and oxidation of 4 (Scheme 2).

In an effort to improve the yield of this conversion we ex-
amined a two-step procedure (Scheme 3). Initial treat-
ment of 1 with polymer-supported Br3

– afforded formate
5, presumably again via 4.4 It is proposed that the acidic
nature of this reagent is sufficient to cause N-protonation
of 4, driving its ring opening to give 5. It is noteworthy
that, in the presence of 2,6-lutidene, amidinium ion 7 was
isolated, presumably via 6. The structure of 7 was con-
firmed by X-ray crystallographic analysis.5 In the absence

of protonation, 4 would be expected to rearrange to the
thermodynamically more stable formamide 6 with subse-
quent cyclization to afford 7.6 Overall, this transformation
achieves the same stereochemical outcome as a Wood-
ward–Prevost dihydroxylation.7 Hydrolysis of the for-
mate 5 afforded an amino alcohol that was directly
protected with triphosgene to give the desired urethane 2
in an overall, purified yield of 86% from 1.

Treatment of 2 with DBU effected elimination of HBr to
afford diene 8 in 90% yield (Scheme 4). At this stage, syn-
thesis of conduramine E required a regio- and stereoselec-
tive dihydroxylation to give 9. Treatment of 8 under
modified Van Rheenen conditions resulted in dihydroxy-
lation exclusively on the exo face with a 4:1 mixture of re-
gioisomers (9/10) in 55% combined yield.8 Sharpless
asymmetric dihydroxylation reagents are usually ineffec-
tive at kinetic resolution but can be regioselective in diene
dihydroxylation.9 Indeed, when we treated 8 with AD-
mix-b for five hours between 0 °C and –5 °C, 9 was ob-
tained as a single regio- and stereoisomer in 76% yield.10

The shape of the bicyclic ring system makes the exo stereo-
selectivity unsurprising but the high regioselectivity is
more difficult to rationalise. Unfortunately, kinetic reso-
lution was ineffective with only 18% ee being achieved at
40% conversion with AD-mix-b.

Scheme 2 Oxidative cyclisation of 1. Reagents and conditions: (i)
NBS (2 equiv), CH2Cl2, 0 °C (49%).
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Scheme 3 Optimised synthesis of 2. Reagents and conditions: (i)
polymer-supported Br3

–, CH2Cl2, r.t.; (ii) 1 M HCl–MeOH; (iii) tri-
phosgene, pyridine, CH2Cl2, (86% from 1); (iv) polymer-supported
Br3

–, 2,6-lutidene, CH2Cl2, r.t. (68%).

Scheme 4 Regio- and stereoselective dihydroxylation of 8.
Reagents and conditions: (i) DBU (1.6 equiv), toluene, r.t. (90%); (ii)
AD-mix-b, MeSO2NH2, t-BuOH–H2O (1:1) (76%) (9/10 = 100:0) or
K2OsO4·2H2O, NMO, H2O–acetone–t-BuOH (1.0:0.75:1.0) (55%, 9/
10 = 4:1); (iii) TFA, reflux (76%).

During a study directed toward the synthesis of (+)-con-
duritol E, the meso-diene 12 was effectively desymme-
trised to give 13 (85% ee) by treatment with AD-mix-b
whilst, as expected, AD-mix-a afforded its enantiomer
(Scheme 5).9,11

Scheme 5 Takano’s desymmetrisation of 12. Reagents and conditi-
ons: AD-mix-b, MeSO2NH2, t-BuOH–H2O (1:1, 85%).

To examine the effect of the cinchona alkaloid ligand on
the outcome of the dihydroxylation of 8, its reaction with
AD-mix-a was carried out but the same product (9) was
obtained (68% yield). Thus, as suggested by the reaction
under Van Rheenen conditions, the selectivity is innate to
the structure of 8. Calculating the transition state energies
in the exo approach of OsO4–NH3, as a model, to either
double bond of 8 showed that leading to 9 to be 0.9 kcal
mol–1 lower in energy than that leading to 10 (Figure 1).
Whilst no firm conclusions can be made on the basis of
this small difference in energies, it is consistent with the
observed ratio of products obtained in the room-tempera-
ture Van Rheenen dihydroxylation.12

Figure 1 Calculated transition-state models leading to 9 and 10
(Gaussian 03); DFT used with B3LYP. LANL2DZ basis set for Os,
6-31+G* for other atoms.

Deprotection of 9 was effected by refluxing with TFA to
afford 11 in 76% yield,13,14 which has been previously re-
ported by Prinzbach et al. as an intermediate in their syn-
thesis of (–)-conduramine E.3a For completeness, utilising
known conditions, 11 was hydrolysed with Ba(OH)2 to
give conduramine E then converted into its tetraacetyl de-
rivative and its 1H NMR spectrum found to be in accord
with data reported by Chida et al.3b

In conclusion, we have further demonstrated the synthetic
utility of crystalline formamide 1, obtained by photoami-
nation of benzene, as a precursor for the regio- and diaste-
reocontrolled synthesis of natural products possessing
polyhydroxylation.
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