Regiospecific iodocyclization of S-allyl dithiocarbamates: synthesis of 2-imino-1,3-dithiolane and 2-iminium-1,3-dithiolane derivatives

Azim Ziyaee Halimehjania, Hajar Maleki, Mohammad R. Saidi

Faculty of Chemistry, Tarbiat Moallem University, 49 Mofateh St., Tehran, Iran
Department of Chemistry, Sharif University of Technology, PO Box 11465-9516, Tehran, Iran

Abstract

4-Alkyl-2-imino-1,3-dithiolanes and 4-alkyl-2-iminium-1,3-dithiolanes were prepared in excellent yields with complete regiospecificity under mild conditions by the iodocyclization of S-allyl dithiocarbamates. Dehydrohalogenation of the 4-alkyl-2-imino-1,3-dithiolanes gave 4-alkylidene-2-imino-1,3-dithiolanes in excellent yields.

The synthesis of compounds that protect crop plants from the action of herbicides without reducing the herbicidal effectiveness against weeds would be beneficial. It is well documented that 2-imino-1,3-dithiolane and 2-iminium-1,3-dithiolane derivatives are safe agents. A variety of methods are available in the literature for the preparation of these biologically active compounds. Imino dithiolanes can be prepared from the reaction of vic-dithiocyanates in refluxing hydrochloric acid, by the reaction of vic-dithiols and cyanogen chloride, acid-catalyzed cyclization of propargyl, allylic, or β-hydroxy alkyl esters of dithiocarbamic acids, and by photolysis of chlorinated S-allyl dithiocarbamate compounds. Unfortunately, difficulties are encountered due to the physical nature of the starting materials. The drawbacks of using vic-dithiols, the toxicity of cyanogen chloride, the corrosive character of mineral acids, and low yield of products are some limitations of these processes.

Iodocyclization of an unsaturated C–C bond with a wide variety of nucleophiles, including N, O, Se, and S, has been studied extensively and it has become a powerful tool for the construction of various heterocycles. In previous work, we reported a simple, one-pot, and green method for the synthesis of dithiocarbamates from amines, CS₂, and different nucleophile acceptors, such as alkyl halides, activated olefins, and epoxides under solvent-free and aqueous conditions. The starting S-allyl dithiocarbamate can be prepared from the reaction of an amine, carbon disulfide, and allyl chloride in water as outlined in Scheme 1.

In continuation of our interest in finding new and efficient methods for the synthesis of novel dithiocarbamate derivatives and the use of these intermediates in organic transformations, we report the iodocyclization of S-allyl dithiocarbamates using I₂ or NIS as the electrophile to give the corresponding 4-alkyl-2-imino-1,3-dithiolanes and 4-alkyl-2-iminium-1,3-dithiolanes in excellent yields (Scheme 2).

After synthesizing the starting dithiocarbamates, we optimized the reaction conditions for the key iodocyclization by changing the number of equivalents of I₂, the solvent, and the temperature for the reaction of dithiocarbamate 1 with I₂. Next, the reactions of different S-allyl dithiocarbamates with iodine were investigated under our optimized conditions. The results are summarized in Tables 1 and 2. The reaction of S-allyl dithiocarbamates based on primary amines was strongly influenced by the substituent present on the allyl group. S- Allyl dithiocarbamates gave excellent yields of 2-imino-1,3 dithiolanes (Table 1, entries 1–6). The reaction of (Z)- or (E)-S-(2-butenyl)dithiocarbamate with iodine gave

Scheme 1. One-pot synthesis of allyl dithiocarbamates in water.

Scheme 2. Synthesis of 2-imino and 2-iminium-1,3-dithiolanes from dithiocarbamates.
a very low yield of product (entry 7). Even the use of NIS failed to deliver the desired product 2g in an acceptable yield. The reaction shows complete regiospecificity for the five-membered ring. The 1H and 13C NMR spectra show 1:1 mixtures of E/Z stereoisomers of 2-imino-1,3-dithiolanes, 2.

The reaction of S-allyldithiocarbamate prepared from secondary amines with I$_2$ was not influenced by the substitution on the γ-carbon and gave excellent yields of the five-membered 2-iminium-1,3-dithiolanes 3 with complete regiospecificity, (Scheme 2 and Table 2). The structures of the products were elucidated from their IR, 1H, and 13C NMR spectra, and by elemental analysis.

The presence of iodine in the products allowed further structural elaboration via dehydrohalogenation using DBU.9 For example, when compound 2a was treated with DBU, the corresponding 4-methylidene-2-imino-1,3-dithiolane, 4, was obtained in excellent yield (Scheme 3).10

According to the literature,9b,11 the CH$_2$I group in five-membered compounds is observed at 4–8 ppm in 13C NMR, while the –CHI group in six-membered compounds appears above 14 ppm. The 13C NMR spectra of the products given in Tables 1 and 2 are completely in agreement with the formation of five-membered rings. Also, 1H NMR spectra indicated that dehydrohalogenation resulted in the formation of an exocyclic double bond and no endocyclic double bond. The DEPT spectrum showed three peaks for the CH$_2$ groups in compound 4, which is in agreement with the five-membered ring. The NMR spectra (at 298 K) showed the presence of an E/Z (1:1) mixture of compound 4 due to the C=N double bond. Only one isomer was observed at temperatures above 320 K because of the rapid interconversion of E and Z isomers.

In conclusion, we have reported a new route for the iodocyclization reaction of S-allyl dithiocarbamates to give five-membered 2-imino- and 2-iminium-1,3-dithiolane derivatives with complete regiospecificity. Treatment of 2-imino-1,3-dithiolane 2a with DBU led to the formation of a 2-imino-4-methylidene-1,3-dithiolane. The procedure is simple and gives excellent yields of potentially biologically significant products.

Acknowledgments

We are grateful to the research council of Sharif University of Technology for financial support. We also thank the Faculty of Chemistry of Tarbiat Moallem University for supporting this work.
References and notes

7. General procedure for the synthesis of 2-imino-1,3-dithiolanes: In a round-bottomed flask equipped with a magnetic stirrer, 5-allyl dithiocarbamate (1 mmol), I₂ (1.5 mmol), and CH₂Cl₂ (10 mL). The mixture was stirred for 4 h at room temperature. After completion of the reaction, the solvent was evaporated in vacuo and the residue was triturated with diethyl ether to afford the products as yellow-brown precipitates. Filtration and washing of the precipitate with diethyl ether (three times) gave the pure products. Selected spectroscopic data: 3b: IR (KBr) 1632 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 3.85–3.91 (m, 2H), 4.03 (m, 4H), 4.18 (m, 4H), 4.39 (m, 2H), 5.10 (m, 1H). ¹³C NMR (125.7 MHz, CDCl₃): δ (ppm) 3.9, 44.5, 56.9, 57.2, 58.3, 65.4, 65.4, 196.2; Anal. Calcd for C₉H₁₄I₂N₂O₂: C, 21.00; H, 2.84; N, 3.06. Found: C, 20.7; H, 2.49; N, 3.10. 3c: IR (KBr) 1626 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 3.79 (m, 6H), 3.84–3.93 (m, 2H), 4.34 (dd, 1H, J=12.78, 4.28 Hz), 4.41 (dd, 1H, J=12.78, 5.17 Hz), 5.09 (m, 1H). ¹³C NMR (125.7 MHz, CDCl₃): δ (ppm) 4.7, 45.5, 48.8, 49.1, 59.4, 194.2; Anal. Calcd for C₂₆H₂₆I₄N₄O₄: C, 21.75; H, 2.65; N, 3.37. Found: C, 21.17; H, 3.24; N, 3.41. 3f: IR (KBr) 1630 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.88 (m, 2H), 2.02 (m, 4H), 2.09 (d, 1H, J=6.76 Hz), 3.89–3.95 (m, 2H), 4.15–4.18 (m, 4H), 4.37 (dd, 1H, J=12.75, 4.36 Hz), 4.42 (dd, 1H, J=12.75, 5.27 Hz). ¹³C NMR (125.7 MHz, CDCl₃): δ (ppm) 145.2, 22.4, 25.9, 26.0, 21.3, 48.8, 58.3, 59.4, 68.3, 190.6. Anal. Calcd for C₂₆H₂₆I₄N₄O₄: C, 25.60; H, 3.62; N, 2.98. Found: C, 25.87; H, 3.52; N, 3.09.

10. Synthesis of compound d by dehydrohalogenation of 2a: DBU (1.5 mmol) was added to a solution of 2a (1 mmol) in CH₂Cl₂ (5 mL), and the resulting mixture was stirred for 1 h at rt. The product was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic layers were washed with water and brine and dried over sodium sulfate, filtered, and evaporated in vacuo. The residue was pure enough to give satisfactory spectroscopic data. E/Z (1:1) mixture of 4: IR (KBr) 1654 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 4.03 (s, 2H) and 4.20 (s, 2H), 4.50 (s, 2H) and 4.53 (s, 2H), 5.25 (s, 2H) and 5.39 (s, 1H) and 5.41 (s, 1H), 7.15–7.32 (m, 10H). ¹³C NMR (125.7 MHz, CDCl₃): δ (ppm) 39.8 and 43.0, 61.7 and 62.8, 110.2 and 111.1, 127.4 and 127.5, 128.1 and 128.2, 128.8 and 128.9, 138.8 and 139.0, 141.7 and 143.5, 164.3 and 165.3.