

TETRAHEDRON LETTERS

Tetrahedron Letters 44 (2003) 5069-5073

Regioselective rearrangement of 7-azabicyclo[2.2.1]hept-2-aminyl radicals: first synthesis of 2,8-diazabicyclo[3.2.1]oct-2-enes and their conversion into 5-(2-aminoethyl)-2,3,4-trihydroxypyrrolidines, new inhibitors of α-mannosidases

Antonio J. Moreno-Vargas and Pierre Vogel*

Institut de Chimie Moléculaire et Biologique de l'Ecole Polytechnique Fédérale de Lausanne, EPFL-BCH, CH-1015 Lausanne-Dorigny, Switzerland

Received 28 April 2003; revised 30 April 2003; accepted 3 May 2003

Abstract—Enantiomerically pure 2,8-diazabicyclo[3.2.1]oct-2-ene derivatives (+)-5 and (–)-5 have been obtained from 2-azido-3-tosyl-7-azabicyclo[2.2.1]heptanes (+)-1 and (–)-2 and their enantiomers, by ring expansion under radical conditions. Compounds (+)-5 and (–)-5 were transformed into hemiaminals 9 ((3S,4R,5R)- and 10 ((3R,4S,5S)-5-(2-aminoethyl)-2,3,4-trihydroxypyrrolidine) that are good inhibitors of α -mannosidases. © 2003 Published by Elsevier Science Ltd.

The 7-azabicyclo[2.2.1]heptane ring system is an attractive target for synthetic chemists since the discovery in 1992 of (-)-epibatidine,¹ a new alkaloid with interesting biological properties (Fig. 1). The [4+2] cycloaddition reaction between N-acyl pyrroles and dienophiles has been shown to be a general method for the synthesis of the 7-azabicyclo[2.2.1]hepta-2,5-diene and 7-azabicyclo[2.2.1]hept-2-ene derivatives.² In recent years, a number of successful [4+2] cycloadditions have employed acetylene equivalents as dienophiles. Ethynyl p-tolyl sulfone derivatives have been found to be one of the most synthetically useful acetylene equivalents²⁻⁴ because of its high reactivity toward dienes and ease of removal of the p-toluenesulfonyl moiety under reductive conditions. Desulfonylation reactions⁵ have been widely studied, specially in the case of alkyl sulfones,⁶ β -keto sulfones⁷ and vinyl sulfones⁸ derivatives of 7azabicyclo[2.2.1]heptane.

Figure 1. (-)-Epibatidine.

As part of our search for new 1,2-diamines as leads for glycosidase inhibitors⁹ we have reported¹⁰ the synthesis of enantiomerically pure 7-azabicyclo[2.2.1]heptanes-2-yl amines (–)-**3** and (–)-**4** (and their enantiomers) that were derived from β -azidosulfones (+)-**1** and (–)-**2**, respectively, via catalytic hydrogenation of the azido group, followed by desulfonylation of the corresponding β -amino sulfone with sodium amalgam (Scheme 1).

With the hope to find a better route to these amines avoiding the use of large amounts of sodium amalgam (10 equiv.) we explored the possibility to apply a radical induced desulfonylation. We report here our results with the reactions of β -azido sulfones (+)-1 and (-)-2 upon treatment with tributyltin hydride (Bu₃SnH)^{5,11} in the presence of catalytic amounts of azoisobutyrocarbonitrile (AIBN) and shall show that a highly regioselective radical rearrangement generating a bicyclic imine of a new type (2,8-diazabicyclo[3.2.1]oct-2-ene) has been uncovered. The latter compound has allowed one to prepare the hemiaminal salt (3*S*,4*S*,5*R*)-5-(2ammonioethyl)-2,3,4-trihydroxy-pyrrolidinium dichloride and its enantiomer that are found to be potent and selective α -mannosidase inhibitors.

Desulfonylation of (+)-1 upon heating with Bu_3SnH and AIBN in toluene at 110°C (3 h) gave the 2,8-diazabicyclo[3.2.1]oct-2-ene derivative (+)- 5^{12} as major com-

0040-4039/03/\$ - see front matter @ 2003 Published by Elsevier Science Ltd. doi:10.1016/S0040-4039(03)01141-9

^{*} Corresponding author. Fax: +41216939375; e-mail: pierre.vogel@ epfl.ch

Scheme 1. See Ref. 10.

pound isolated by column chromatography on silica gel (40% yield) (Scheme 2). Primary amine 7 resulting from the reduction of azide (+)-1 without skeletal rearrangement was isolated as minor compound (14%), together with secondary amine (+)- 6^{13} (13%) resulting from the reduction of imine (+)-5. Hydrogenation of imine (+)-5 in MeOH in the presence of a catalytical amount of 10% Pd on charcoal provided pure (+)-6 in 97% yield. Treatment of the diastereoisomeric β -azido sulfone (-)-2 with Bu₃SnH/AIBN as above gave the same intracyclic imine (+)-5 in 56% yield, together with primary amine 8 (12%) and (+)-6 (10%, after column chro-

matography on silica gel). When pure amines 7 and 8 were treated with $Bu_3SnH/AIBN$ as above, no trace of product of rearrangement could be detected. After 3 h at 110°C, and in the presence of an excess of $Bu_3SnH/AIBN$, 7 and 8 were recovered unchanged almost quantitatively. This indicates that reductions of azides into the primary amines compete with the radical rearrangement transforming (+)-1 and (-)-2 into imine (+)-5. After heating (+)-1 and (-)-2 (toluene and xylene at reflux) in the absence of $Bu_3SnH/AIBN$, all the starting materials were recovered, while heating of (+)-1 in the presence of Bu_3SnH (without AIBN) only produced amine 7.

The presence of Bu₃SnH/AIBN was absolutely necessary to induce the rearrangement, suggesting that aminyl radicals of type A (Scheme 3) are probably involved in the mechanism. It is known that alkyl azides generate aminyl radicals¹⁴ by loss of N₂ in the presence of Bu₃SnH/AIBN. Radicals A undergo regiospecific 1,2-shift of the σ (C(1)–C(2)) bond forming intermediate radicals B that finally afford rearranged imines after Bu₃Sn[•] elimination. The radical desulfonvlation takes place after the rearrangement because the C-4 centered radical contiguous to a C=N bond (radical **D**, Scheme 3) is more stable than other secondary alkyl radicals, explaining that only desulfonylated products were isolated for rearranged species. Interestingly, the same high regioselectivity is observed for both the *endo*-aminyl radical (arising from (+)-1) and the *exo*-aminyl radical (arising from (-)-2) in their rearrangement into (+)-5. The greater migratory aptitude of the σ (C(1)–C(2)) in radicals of type A compared with that of the σ (C(2)-H) or σ (C(3)–C(2))

Scheme 2. Ring expansion in the reductive desulforylation of β -azido sulfones (+)-1 and (-)-2.

Scheme 3. Rearrangement through aminyl radical intermediates.

bond is noteworthy. It demonstrates the favorable effect of the BocN substituent on the 1,2-shift activation barrier. The 6-*exo*-oxy substitution may also play a favorable role.

To our knowledge there is no previous report on the synthesis of 2,8-diazabicyclo[3.2.1]oct-2-enes, although the synthesis of 2,8-diazabicyclo[3.2.1]octanes¹⁵ and related structures¹⁶ have been reported. Starting from the enantiomer β -azido sulfones (–)-1 and (+)-2, the corresponding enantiomerically pure derivatives (–)-5 and (–)-6 were synthesized following the procedure described above. Compound (+)-6 and (–)-6 were deprotected under aqueous acidic conditions (HCl 1 M-THF, 1:1) (Scheme 4). Under these conditions the

Scheme 4. Acidic deprotection of 2,8-diazabicy-clo[3.2.1]octanes.

Boc groups are rapidly cleaved to give the corresponding unstable isopropylidene aminals, which are immediately hydrolyzed¹⁷ to give hemiaminals $9^{18,19}$ and 10, as a mixture of anomers, in quantitative yields.

We have assayed²⁰ hemiaminals 9 and 10 for their inhibitory activities toward 25 commercially available glycosidases. The data are summarized in Table 1 for two α -galactosidases, three β -galactosidases, two β -glucosidases, two α -mannosidases, one β -xylosidase and one α -N-acetylgalactosaminidase. These compounds did not show any inhibitory activity at 1 mM concentration toward the following enzymes: a-galactosidase from *Escherichia coli*, β-galactosidases from *Aspergillus* niger and from Aspergillus orizae, α -L-fucosidase from bovine epididymis, α -glucosidases from veast, from rice and from baker yeasts, amyloglucosidases from almonds and from Caldocellum saccharolyticum, βmannosidases from *Helix pomatia* and β -N-acetylglucosaminidase from jack beans, from bovine epididymis A and B.

Hemiaminals (3S,4S,5R)-5-(2-ammonioethyl)-2,3,4-trihydroxypyrrolidinium dichloride **9** (HCl)₂ and its enantiomer **10** (HCl)₂ resulted to be good inhibitors of α -mannosidases from jack beans, with $K_i = 2.5$ and 0.94 μ M, respectively, and from almonds, with $K_i = 1.9$ and 1.2 μ M, respectively. Both enantiomers present similar inhibitory properties (Table 1). However, the mode of inhibition depends on the enzyme and on the absolute configuration of the 2,3,4-trihydroxypyrrolidine. Under the pH conditions²⁰ used for the inhibition tests, these hemiaminals can equilibrate with the corresponding imines through water elimination. Related imines of this kind have been reported²¹ to be inhibitors of α -mannosidases.

In summary, we have described the first case of radical ring expansion in 2-azido-3-tosyl-7-azabicyclo[2.2.1]-heptane systems that gives access to a new kind of bicyclic structures related with the epibatidine, the enantiomerically pure 2,8-diazabicyclo[3.2.1]oct-2-enes (+)- and (-)-5. These compounds were transformed in two steps into hydroxylated hemiaminals 9 and 10, that are good and relatively selective α -mannosidase inhibitors.

Table 1. Inhibitory activities of (3S,4S,5R)-5-(2-ammonioethyl)-2,3,4-trihydroxypyrrolidinium dichloride **9** (HCl)₂ and its enantiomer **10** (HCl)₂. Percentage of inhibition at 1 mM concentration (%), IC₅₀ and K_i in μ M, when measured. Optimal pH, 35°C^{a,b}

Enzyme/inhibitor	9	10
α-Galactosidase		
Coffee beans	ni	55%
Aspergillus niger	30%	84%
β-Galactosidase	23%	ni
Lischerichia con	2370	
Bovine liver	34%	44%
Jack beans	ni	59%
Almonds	59%	82%
Caldocellum saccharolyticum α-Mannosidase	38%	71%
Jack beans	97%	97%
	$IC_{50} = 4.8$ $K_i = 2.5$ (N)	$IC_{50} = 4.5$ $K_i = 0.94$ (M)
Almonds	98%	98%
	$IC_{50} = 4.9$ K = 1.9 (C)	$IC_{50} = 4.4$ K = 1.2 (M)
	$K_{i} = 1.5$ (C)	$K_{i} = 1.2$ (WI)
β-Xylosidase Aspergillus niger α-N-Acetylgalacto-saminidase	33%	37%
Chicken liver	ni	54%

^a For the conditions of measurements, see Ref. 20.

^b (C), competitive; (M), mixed type; (N), non-competitive inhibition; ni, no inhibition at 1 mM concentration.

Acknowledgements

We are grateful to the Swiss National Science Fondation (Grant No. 20.63667.00), the 'Office Fédéral de l'Education et de la Science' (Bern, COST D13/0001/ 99) and the Dirección General de Investigación Científica y Técnica of Spain (Grant No. BQU-2001-3779) for generous support. We thank also Miss C. Schütz for the enzymatic measurements.

References

- Spand, T. F.; Garraffo, H. M.; Edwards, M. W.; Daly, J. W. J. Am. Chem. Soc. 1992, 114, 3475–3478.
- 2. Chen, Z.; Trudell, M. L. Chem. Rev. 1996, 96, 1179-1193.
- For the use of 2-bromoethynyl aryl sulfones as acetylene equivalents, see: Zhang, C.; Ballay, C. J., II; Trudell, M. L. J. Chem. Soc., Perkin Trans. 1 1999, 675–676.
- For the use of ethynyl aryl sulfones as acetylene equivalents, see: (a) Leung-Toung, R.; Liu, Y.; Muchowski, J. M.; Wu, Y.-L. J. Org. Chem. 1998, 63, 3235–3250; (b) Altenbach, H. J.; Blech, B.; Marco, J. A.; Vogel, E. Angew. Chem., Int. Ed. Engl. 1982, 21, 789–790.

- For a review about desulfonylation reactions, see: Najera, C.; Yus, M. *Tetrahedron* 1998, 55, 10547–10658.
- Giblin, G. M. P.; Jones, C. D.; Simpkins, N. S. Synlett 1997, 589–590.
- (a) Wei, Z.-L.; George, C.; Kozikowski, A. P. Tetrahedron Lett. 2003, 44, 3847–3850; (b) Wei, Z.-L.; Petukhov, P. A.; Xiao, Y.; Tückmantel, W.; George, C.; Kellar, K. J.; Kozikowski, A. P. J. Med. Chem. 2003, 46, 921–924; (c) Pandey, G.; Tiwari, S. K.; Singh, R. S.; Mali, R. S. Tetrahedron Lett. 2001, 42, 3947–3949; (d) Pavri, N. P.; Trudell, M. L. Tetrahedron Lett. 1997, 39, 7993–7996.
- (a) Clayton, S. C.; Regan, A. C. *Tetrahedron Lett.* 1993, 34, 7493–7496; (b) Liang, F.; Navarro, H. A.; Abraham, P.; Kotian, P.; Ding, Y.-S.; Fowler, J.; Volkow, N.; Kuhar, M. J.; Carroll, F. I. *J. Med. Chem.* 1997, 40, 2293–2295; (c) Brieaddy, L. E.; Liang, F.; Abraham, P.; Lee, J. R.; Carroll, F. I. *Tetrahedron Lett.* 1998, 38, 5321–5322.
- (a) Popowycz, F.; Gerber-Lemaire, S.; Demange, R.; Rodríguez-García, E.; Carmona-Asenjo, A. T.; Robina, I.; Vogel, P. *Bioorg. Med. Chem. Lett.* 2001, *11*, 2489– 2493; (b) Gerber-Lemaire, S.; Popowycz, F.; Rodríguez-García, E.; Carmona-Asenjo, A. T.; Robina, I.; Vogel, P. *ChemBiochem* 2002, 466–470.
- Moreno-Vargas, A. J.; Schütz, C.; Scopelliti, R.; Vogel, P. J. Org. Chem., in press.
- For examples of reductive elimination using Bu₃SnH/ AIBN, see: Padwa, A.; Muller, C. L.; Rodríguez, A.; Watterson, S. H. *Tetrahedron* 1998, 54, 9651–9666.
- 12. Data for (+)-5: $[\alpha]_D$ +7 (*c* 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃, 323 K, δ ppm, *J* Hz) δ 7.58 (br. s, 1H, H-3), 5.61 (br. s, 1H, H-1), 4.59 (d, 1H, $J_{6,7}$ =5.5, H-6), 4.43 (d, 1H, H-7), 4.30 (br. s, 1H, H-5), 2.86 (dd, 1H, $J_{4a,4b}$ =18.9, $J_{4a,5}$ =4.4, H-4a), 2.04 (dd, 1H, $J_{3,4b}$ =2.2, H-4b), 1.48 (s, 9H, (CH₃)₃C), 1.43, 1.28 (s each, 3H each, (CH₃)₂C); ¹³C NMR (100.4 MHz, CDCl₃, δ ppm) δ 161.7 (C-3), 153.6 (CO), 112.2 ((CH₃)₂C), 84.2, 83.2 (C-6, C-7), 80.3 ((CH₃)₃C), 73.9 (C-1), 56.1 (C-5), 34.3 (C-4), 28.3 ((CH₃)₃C), 26.2, 24.7 ((CH₃)₂C); CIMS 283 (75% [M+H]⁺).
- Data for (+)-6: [α]_D +50 (c 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃, 298 K, δ ppm, J Hz, mixture of two rotamers) δ 5.00, 4.91 (s each, 1H, H-1), 4.73 (d, 1H, J_{6,7}=5.6, H-6), 4.63 (br. d, 1H, H-7), 4.38, 4.22 (br. s each, 1H, H-5), 2.93 (dd, 1H, J_{3a,4a}=6.23, J_{3a,3b}=14.7, H-3a), 2.79 (m, 1H, H-3b), 1.94 (m, 1H, H-4a), 1.50 (s, 9H, (CH₃)₃C), 1.48 (m, 1H, H-4b), 1.44, 1.35 (s each, 3H each, (CH₃)₂C); ¹³C NMR (100.4 MHz, CDCl₃, δ ppm, mixture of two rotamers) δ 154.1, 153.6 (CO), 111.3 ((CH₃)₂C), 83.1, 82.5, 82.2, 81.8 (C-6, C-7), 79.9, 79.8 ((CH₃)₃C), 73.4, 72.5 (C-1), 59.5, 58.3 (C-5), 39.1, 39.0 (C-3), 29.3, 29.0 (C-4), 28.4 ((CH₃)₃C), 26.0 ((CH₃)₂C), 24.4, 24.3 ((CH₃)₂C); CIMS 285 (38% [M+H]⁺).
- (a) Kim, S.; Ho Joe, G.; Yun Do, J. J. Am. Chem. Soc. 1993, 115, 3328–3329; (b) Kim, S.; Yun Do, J. J. Chem. Soc., Chem. Commun. 1995, 1607–1608; (c) Benati, L.; Nanni, D.; Sangiorgi, C.; Spagnolo, P. J. Org. Chem. 1999, 64, 7836–7844; (d) Benati, L.; Leardini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Strazzari, S.; Zanardi, G.; Calestani, G. Tetrahedron 2002, 58, 3485– 3492.

- For 2,8-diazabicyclo[3.2.1]octane derivatives, see: Paulsen, H.; Landsky, G.; Koebernick, H. Chem. Ber. 1978, 111, 3699–3704.
- 3,8-Diazabicyclo[3.2.1]octane derivatives have been described as analgesics structurally related to epibatidine, see e.g.: Barlocco, D.; Cignarella, G.; Tondi, D.; Vianello, P.; Villa, S.; Bartolini, A.; Ghelardini, C.; Galeotti, N.; Anderson, D. J.; Kuntzweider, T. A.; Colombo, D.; Toma, L. J. Med. Chem. 1998, 41, 674–681 and references cited therein.
- Hydrolysis of aminals to give hemiaminals under acidic conditions is immediate; for a review on aminals, see: Duhamel, P. In *The Chemistry of Functional Groups*, *Supplement F*, pt. 2; Patai, Ed.; Wiley: New York, 1982; p. 849.
- Data for 9 (major anomer): ¹H NMR (400 MHz, CD₃OD, 298 K, δ ppm, J Hz) δ 4.89 (d, 1H, J_{2,3}=2.1, H-2), 4.16 (dd, 1H, J_{4,5}=7.6, J_{3,4}=4.5, H-4), 4.12 (dd, 1H, H-3), 3.55 (q, 1H, J_{5,1'a}=J_{5,1'b}=7.7, H-5), 3.20 (t, 2H, J_{2',1'}=7.9,

H-2'a and H-2'b), 2.28 (m, 2H, H-1'a and H-1'b); 13 C NMR (100.4 MHz, CD₃OD, 298 K, δ ppm) δ 97.9 (C-2), 75.3 (C-4), 74.1 (C-3), 60.0 (C-5), 37.7 (C-2'), 30.2 (C-1').

- For an example of obtention of an hemiaminal as hydrochloride salt under acidic deprotection, see: Spanu, P.; Rassu, G.; Ulgheri, F.; Zanardi, F.; Battistini, L.; Casiraghi, G. *Tetrahedron* 1996, *52*, 4829–4838.
- Appropriate *p*-nitrophenyl glycoside substrates buffered to optimum pH of the enzymes were used: for details, see: (a) Brandi, A.; Cicchi, S.; Cordero, F. M.; Frignoli, B.; Goti, A.; Picasso, S.; Vogel, P. *J. Org. Chem.* **1995**, *60*, 6806–6812; (b) Picasso, S.; Chen, Y.; Vogel, P. *Carbohydr. Lett.* **1994**, *1*, 1–8.
- (a) Behr, J.-B.; Defoin, A.; Mahmood, N.; Streith, J. *Helv. Chim. Acta* 1995, *78*, 1166–1176; (b) Joubert, M.; Defoin, A.; Tarnus, C.; Streith, J. *Synlett* 2000, 1366–1368; (c) Behr, J.-B.; Chevrier, C.; Defoin, A.; Tarnus, C.; Streith, J. *Tetrahedron* 2003, *59*, 543–553 and references cited therein.