Three-Component One-Pot Approach to Synthesize Benzopyrano[4,3-d]pyrimidines

Dewen Li, Shudong Duan, and Youhong Hu*

State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Science, 555 Zu Chong Zhi Road, Shanghai 201203, China

Received August 14, 2010

A novel benzopyrano[4,3-d]pyrimidine scaffold was generated via a three-component one-pot reaction from iodochromone, alkyne, and an amidine through a Sonogashira coupling, condensation, and cycloaddition. This combinatorial synthetic approach provides an efficient, easy construction of a diversified heterocyclic compounds library.

Introduction

High-throughput screening (HTS) is employed extensively in drug research and discovery. There is a strong desire to develop efficient methods and strategies for the combinatorial synthesis of a diversified small molecules library to fill the compound demands of HTS.¹ To this end, many efficient synthetic methods have been developed,² and one attractive approach is the designation and development of an easily prepared substrate with multireactive sites to promote cascade reactions³ or multicomponent reactions⁴ in one-pot process since such a chemical operation would allow for the generation of a large number of diversified complex molecules with a high efficiency.

Benzopyrano[4,3-d]pyrimidine is an important pharmacophore that exhibits anti-inflammatory, antiplatelet, and antithrombotic activities.⁵ Relatively few papers have reported on the formation of benzopyrano[4,3-d]pyrimidines with a limited substitution from 3-formylchromone or its equivalents by condensation.⁶ Herein, we report on an efficient combinatorial synthesis of substituted benzopyrano[4,3-d]pyrimidines from a three-component one-pot tandem process in good to excellent yields.

Results and Discussion

Chromone, as a 1,3-diketone equivalent, can be condensed with amidine to form *o*-hydroxyphenyl pyrimidine. We envisioned the hydroxyl group of phenol as being a nucleophile that could take place in a further nucleophilic cyclization with an adjacent triple bond to generate a benzopyrano[4,3-*d*]pyrimidine scaffold from intermediate **A**, which could be generated from iodochromone, alkyne, and amidine through a Sonogashira coupling/condensation/cycloaddition (Path A) or a condensation/Sonogashira coupling/cycloaddition (Path B). In this one-pot process, the palladium species could play a dual role as (i) a Sonogashira coupling catalyst and (ii) as an activating reagent for the triple bond, and a

large number of benzopyrano[4,3-d]pyrimidines with three diversified positions could be constructed efficiently (Scheme 1).

We evaluated the cascade reaction of iodochromone $1\{1\}$ with phenylacetylene $2\{I\}$ and methyl carbamimidate sulfate $3\{I\}$ under the different conditions (Table 1) to identify the appropriate reaction conditions for this hypothesis. Only intermediate B was detected when the reaction, catalyzed by PdCl₂(PPh₃)₂ (5 mol %) and CuI (10 mol %) in the presence of Et₃N or DIPEA (4.0 equiv) as a base, was carried out at room temperature for 2 h. On increasing the reaction temperature to 60 °C and stirring for 6 h, the desired product $4\{1,1,1\}$ was not observed, and the reaction was maintained at the stage of intermediate B alone (Table 1, entries 1 and 2). We speculated that Et₃N or DIPEA as a weak organic base could not promote the condensation reaction to form intermediate A and process the final cyclization. When employed DBU as a strong base, the desired product $4\{1,1,1\}$ was obtained in 30% yield, along with the dimeric byproduct of B⁸ (Table 1, entry 3). On changing the base to inorganic

Scheme 1. Designed Tandem Process to Form Benzopyrano[4,3-d]pyrimidines

$$R^{1} = R^{2} + R^{2} + R^{3}$$

$$path A$$

$$path B$$

$$R^{1} = R^{2} + R^{3}$$

$$path B$$

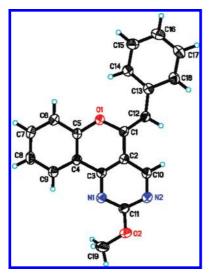
$$R^{3} = R^{2} + R^{3}$$

$$R^{1} = R^{2} + R^{3}$$

$$R^{1} = R^{2} + R^{3}$$

$$R^{2} = R^{3} + R^{3}$$

$$R^{3} = R^{4} + R^{3} + R^{3}$$


$$R^{4} = R^{4} + R^{3} + R^{4} + R$$

^{*} To whom correspondence should be addressed. E-mail: yhhu@mail.shcnc.ac.cn.

Table 1. Screening Solvent Systems and Bases for the One-Pot Reaction^a

entry	base	solvent	yield (%) ^b
1	Et ₃ N (4.0 equiv)	DMF	0
2	DIPEA (4.0 equiv)	DMF	0
3	DBU (4.0 equiv)	DMF	30
4	K ₂ CO ₃ (4.0 equiv)	DMF	63
5	Cs_2CO_3 (4.0 equiv)	DMF	25
6	NaOH (4.0 equiv)	DMF	7
7	DIPEA $(2.0 \text{ equiv}) + K_2CO_3 (4.0 \text{ equiv})$	DMF	85
8	DIPEA $(2.0 \text{ equiv}) + K_2CO_3 (4.0 \text{ equiv})$	Toluene	25
9	DIPEA $(2.0 \text{ equiv}) + K_2CO_3 (4.0 \text{ equiv})$	THF	48
10	DIPEA (2.0 equiv) + K_2CO_3 (4.0 equiv)	CH ₃ CN	48

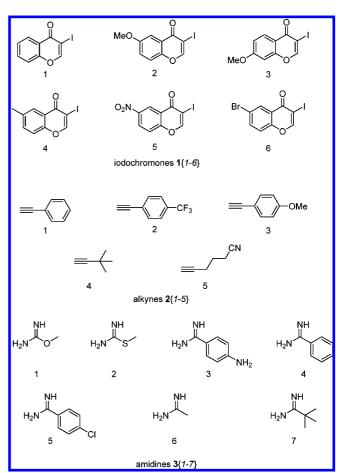

^a Reaction conditions: A mixture of 0.20 mmol 1{1}, 1.5 equiv. of $2{I}$, 1.5 equiv. of $3{I}$, 5 mol % PdCl₂(PPh₃)₂, and 10 mol % CuI in solvent (2.0 mL) was heated at 60 °C for 6 h. ^b Isolated yield based on iodochromone. DIPEA = N,N-diisopropylethylamine, THF = tetrahydrofuran, and DMF = N,N-dimethylformamide.

Figure 1. ORTEP plot of $4\{1,1,1\}$ shown with ellipsoids at the 50% level.⁹

 K_2CO_3 , the yield of $4\{1,1,1\}$ was improved to 63% significantly (Table 1, Entry 4). Other inorganic bases, such as Cs₂CO₃ and NaOH, gave the product in low yield. The combination of DIPEA (2.0 equiv) and K₂CO₃ (4.0 equiv) promoted the reaction smoothly to give the product in 85% yield (Table 1, entry 7). A control experiment was carried out using a mixture of iodochromone $1\{I\}$ with methyl carbamimidate sulfate $3\{1\}$ (1.5 equiv) with DIPEA (2.0 equiv) and K₂CO₃ (4.0 equiv) in the presence of PdCl₂(PPh₃)₂ (5 mol %) and CuI (10 mol %) in DMF at room temperature for 2 h, and no intermediate C was detected. After the addition of phenylacetylene $2\{1\}$, intermediate **B** was formed the final product was obtained by heating the mixture at 60 °C. This result showed that pathway A is the major pathway for forming the designed product. DMF was found to be the best solvent system on screening other solvents for the reaction. The configuration of the product $4\{1,1,1\}$ was unambiguously established as the Z form from X-ray crystal structure analysis (Figure 1).

To inspect this approach, particularly with regard to library construction, this methodology was evaluated using different

Figure 2. Chemsets employed in the Sonogashira coupling/condensation and cycloaddition protocol.

substituted iodochromones¹⁰ and alkynes (Figure 2) with $3\{I\}$ under the optimized reaction conditions. The results are shown in Table 2. On changing the electronic and steric properties (R^2) on the acetylene moiety the corresponding products were afforded in moderate to good yields (Table 2, entries 1–4). An electron-donating group (R^1 = OMe) at the 6-position or 7-position of iodochromone (Table 2, entries 5 and 6) gave the corresponding product in a reasonable yield. Apparently, an electron-withdrawing group (R^1 = NO₂ or Br) at the 6-position of iodochromone (Table 2, Entries 8 and 9) afforded complicated products, and isolated $4\{5,1,1\}$ and $4\{6,1,1\}$ in 15% and 18% yields, respectively.

When the reaction was extended to other amidines $3\{2-7\}$ (Figure 2), only 3{2} and 3{3} was successfully transformed to the corresponding product in 65% and 68% yield, respectively. It is worth noting that amidines $3\{1-3\}$ with an electron-donating group preceded the formation of the desired product in one-pot tandem process smoothly. Amidines $3{4-7}$ gave only a trace amount of the desired product. On carefully checking the reaction process, we did not find the formation of intermediate **B** at room temperature. On heating the reaction mixture, a small amount of the desired product was generated with a polar major product 5, which was identified as an imidazole scaffold. A plausible reaction mechanism is shown in Scheme. 2. Under basic conditions, amidines without an electron-donating group can directly undergo a Michael addition with iodochromone and pyrone ring-opening to produce the intermediate **D**. An intramo-

Table 2. Reaction of Various Iodochromones 1 and Alkynes 2 with Methyl Carbamimidate $3\{1\}^{a}$

$$R^{1} \stackrel{\square}{ \longrightarrow} + R^{2} + H_{2}N \stackrel{\text{NH}}{ \longrightarrow} OMe \xrightarrow{PdCl_{2}(PPh_{3})_{2}, Cul} OMe$$

$$1 \qquad 2 \qquad 3\{7\}$$

Entry	Substrate 1	Substrate 2	Product 4	Yield(%) ^b
1	1(1)	=	F ₃ C — N OMe 4{1,2,1}	61
2	1{1}	OMe	MeO — N OMe O 4(1,3,1)	75
3	1{1}	= \ 2{4}	NC 4(1,4,1)	74
4	1{1}	CN =2{5}	OME 0 4{1,5,1}	48
5	MeO 1{2}	= \(\) 2(1)	N OMe 4{2,1,1}	45
6	MeO 1{3}	2{1}	OMe N OMe 4{3,1,1}	43
7	1(4)	2{1}	MeO OMe OMe 4{4,1,1}	66
8	O ₂ N	2{1}	OMe 0 4{5,1,1}	15
9	1(5) Br O 1	2{1}	NO ₂ NO ₂ NOMe N A{6,1,1}	18

^a Unless otherwise stated, the reaction was carried out using Method A. ^b Isolated yield based on iodochromone 1.

lecular S_N 2 reaction with iodide instead of condensation with a carbonyl group would generate imidazole **5** as the major pathway.

A sequential process was applied, where a mixture of iodochromone $\mathbf{1}\{I\}$ and alkyne $\mathbf{2}\{I\}$ was stirred under the Sonogashira coupling conditions for 2 h at ambient temper-

ature, followed by addition with different amidines and K_2CO_3 . The reaction mixture was heated at 60 °C for 6 h to give the desired product $4\{1,1,2-7\}$ in good to excellent yields (Table 3). The 1D-NOEDIFF of $4\{1,1,7\}$ was further confirmed the Z configuration (>95%) of the desired product. The condensation and cycloaddition proceeded well without

Scheme 2. Plausible Reaction Mechanism to Generate 5

Michael addition
$$NH_2$$
 NH_2
 $NH_$

the electronic and steric affect of the substituent amidines after the Sonogashira coupling. When applied this sequential one-pot process to the different alkynes and iodochromones, the yields of the reactions in Table 2 were increased to 55%-90%. In particular, substrates $1\{5\}$ and $1\{6\}$ gave the corresponding product $4\{5,1,1\}$ and $4\{6,1,1\}$ in 55% and 60% yields. From our investigation, this sequential one-pot

process should generate a broad substituted benzopyrano[4,3-d]pyrimidines library with three diversified points efficiently.

Conclusion

In conclusion, we have developed an efficient approach to generate a diversified benzopyrano[4,3-d]pyrimidines library in moderate to good yields via a sequential one-pot reaction of iodochromones, alkynes, and amidines by a Sonogashira coupling, condensation, and cycloaddition. Further library generation and biological evaluation of these compounds is currently under way.

Experimental Section

Method A for the Synthesis of Benzopyrano[4,3-d]pyrimidine. Iodochromone (0.2 mmol), alkyne (1.5 equiv), PdCl₂(PPh₃)₂ (0.01 mmol), CuI (0.02 mmol), amidine (1.5 equiv), and mixed bases of DIPEA (2.0 equiv) and K₂CO₃ (4.0 equiv) were dissolved in DMF (2.0 mL). The mixture was stirred at room temperature for 2 h and then heated at

Table 3. Reaction of Iodochromone $1\{I\}$ and Ethynylbenzene $2\{I\}$ with Various Amidines 3^a

Entry	Substrate 3	Product 4	Yield(%) ^b
1	NH H ₂ N S 3{2}	=N N 4{1,1,2}	86 (65) ^c
2	NH H ₂ N NH ₂	NH ₂ NH ₂ 4{1,1,3}	84 (68) ^c
3	NH H ₂ N 3{4}	4{1,1,4}	92
4	NH H ₂ N CI	N CI	74
5	NH H ₂ N 3{6}	N 4{1,1,6}	61
6	NH H ₂ N 3{7}	N 4(1,1,7)	60

^a Unless otherwise stated, the reaction was carried out using method B. ^b Isolated yield based on iodochromone 1{1}. ^c The yield in parentheses was obtained according to method A.

60 °C for 6 h. The reaction was monitored by TLC. After the reaction was complete, the resulting mixture was diluted with water (20 mL) and extracted with ethyl acetate (25 mL \times 3), and the combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated to give the crude product, which was further purified by column chromatography.

(*Z*)-5-Benzylidene-2-phenyl-5*H*-benzopyrano[4,3-*d*]pyrimidine 4{1,1,1}. With 1{1}, 2{1}, and 3{1} as substrates, method A was followed then the product was purified by column chromatography (silica gel, 15:1 petroleum ether/ethyl acetate) to afford 4{1,1,1} (85%) as a bright yellow solid. Melting point: 128–130 °C. ¹H NMR(300 MHz,CDCl₃): δ = 4.12 (s, 3H) 6.11 (s, 1H) 7.10–7.18 (m, 2H), 7.21–7.25 (m, 1H), 7.35–7.50 (m, 3H), 7.78 (d, *J* = 7.62 Hz, 2H), 8.27 (dd, *J* = 7.92, 1.76 Hz, 1H), 8.81 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.4, 155.3, 155.2, 154.8, 144.3, 134.7, 133.8, 128.6, 128.4, 126.5, 124.9, 123.1, 118.4, 116.3, 115.4, 102.9, 55.2. MS (ESI): m/z 303.1 (M + H)⁺. HRMS (ESI) calcd for C₁₉H₁₅N₂O₂ (M + H)⁺: 303.1128; found 303.1128.

Method B for the Synthesis of Benzopyrano[4,3-d]pyrimidine. Iodochromone (0.2 mmol), alkyne (1.5 equiv), PdCl₂(PPh₃)₂ (0.01 mmol), CuI (0.02 mmol), and DIPEA (2.0 equiv) were dissolved in DMF (2.0 mL) and stirred at room temperature for 2 h. Then, amidine (1.5 equiv) and K₂CO₃ (4.0 equiv) were added to the mixture, and this was heated at 60 °C for 6 h. The reaction was monitored by TLC. After the reaction was complete, the resulting mixture was diluted with water (20 mL) and extracted with ethyl acetate (25 mL \times 3), and the combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated to give the crude product, which was further purified by column chromatography.

(*Z*)-5-Benzylidene-2-(methylthio)-5*H*-benzopyrano[4,3-*d*]pyrimidine 4{1,1,2}. With 1{1}, 2{1}, and 3{2} as substrates, method B was followed then the product was purified by column chromatography (silica gel, 20:1 petroleum ether/ethyl acetate) to afford 4{1,1,2} (86%) as yellow solid. Melting point: 156–159 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.66 (s, 3 H), 6.15 (s, 1H), 7.08–7.19 (m, 2H), 7.22–7.28 (m, 1H), 7.35–7.50 (m, 3H), 7.79 (d, *J* = 7.62 Hz, 2H), 8.27 (dd, *J* = 8.05, 1.61 Hz, 1H), 8.75 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 172.5, 155.2, 152.5, 152.2, 144.2, 134.6, 133.7, 128.7, 128.4, 126.7, 124.8, 123.1, 118.3, 116.4, 103.8, 14.3. MS (EI): m/z 318, (M⁺, 100). HRMS (EI) calcd for (M⁺) C₁₉H₁₄N₂OS: 318.0827; found 318.0819.

Acknowledgment. We are grateful for financial support from National Science & Technology Major Project "Key New Drug Creation and Manufacturing Program" (2009ZX-09301-001) and National Natural Science Foundation of China (30873142).

Supporting Information Available. Representative experimental procedure and mass, ¹H NMR, and ¹³C NMR spectra for compounds **4** and crystallographic data CCDC

772029. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (a) Walsh, D. P.; Chang, Y. T. Chem. Rev. 2006, 106, 2476–2530.
 (b) Arya, P.; Chou, D. T. H.; Baek, M. G. Angew. Chem., Int. Ed 2001, 40, 339–346.
 (c) Schreiber, S. L. Science 2000, 287, 1964–1969.
- (2) (a) Moos, W. H.; Hurt, C. R.; Morales, G. A. Mol. Diversity 2009, 13, 241–245. (b) Ganem, B. Acc. Chem. Res. 2009, 42, 463–472. (c) Dolle, R. E.; Le Bourdonnec, B.; Goodman, A. J.; Morales, G. A.; Thomas, C. J.; Zhang, W. J. Comb. Chem. 2009, 11, 739–790. (d) Edwards, P. J. Drug Discovery Today 2009, 14, 108–110.
- (3) (a) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993–3009.
 (b) Alba, A. N.; Companyo, X.; Viciano, M.; Rios, R. Curr. Org. Chem. 2009, 13, 1432–1474.
 (c) Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439–4486.
- (4) (a) Hugel, H. M. Molecules 2009, 14, 4936–4972. (b) Perreault, S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149–3159.
 (c) D'Souza, D. M.; Müller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095–1108. (d) Willy, B.; Müller, T. J. J. Curr. Org. Chem. 2009, 13, 1777–1790. (e) Willy, B.; Müller, T. J. J. ARKIVOC 2008, part i, 195–208. (f) Sakai, H.; Tsutsumi, K.; Morimoto, T.; Kakiuchi, K. Adv. Synth. Catal. 2008, 350, 2498–2502.
- (5) (a) Bruno, O.; Brullo, C.; Schenone, S.; Bondavalli, F.; Ranise, A.; Tognolini, M.; Ballabeni, V.; Barocelli, E. *Bioorg. Med. Chem.* 2004, 12, 553–61. (b) Bruno, O.; Schenone, S.; Ranise, A.; Bondavalli, F.; Barocelli, E.; Ballabeni, V.; Chiavarini, M.; Bertoni, S.; Tognolini, M.; Impicciatore, M. *Bioorg. Med. Chem.* 2001, 9, 629–636. (c) Bruno, O.; Brullo, C.; Bondavalli, F.; Ranise, A.; Schenone, S.; Tognolini, M.; Ballabeni, V.; Barocelli, E. *Med. Chem.* 2007, 3, 127–34. (d) Bruno, O.; Brullo, C.; Schenone, S.; Ranise, A.; Bondavalli, F.; Barocelli, E.; Tognolini, M.; Magnanini, F.; Ballabeni, V. *Il Farmaco* 2002, 57, 753–758.
- (6) (a) Mulwad, V. V.; Hegde, A. S. Indian J. Heterocycl. Chem. 2009, 18, 219–222. (b) Strakova, L.; Petrova, M.; Belyakov, S.; Strakovs, A. Chem. Heterocycl. Compd. 2007, 43, 793–798. (c) Ibrahim, H. K.; Hassanen, J. A. Egyptian J. Chem. 2007, 50, 403–423. (d) An, H.; Eum, S. J.; Koh, M.; Lee, S. K.; Park, S. B. J. Org. Chem. 2008, 73, 1752–1761. (e) Bruno, O.; Brullo, C.; Ranise, A.; Schenone, S.; Bondavalli, F.; Barocelli, E.; Ballabeni, V.; Chiavarini, M.; Tognolini, M.; Impicciatore, M. Bioorg. Med. Chem. Lett. 2001, 11, 1397–400. (f) Majumdar, K. C.; Basu, P. K.; Mukhopadhyay, P. P.; Sarkar, S.; Ghosh, S. K.; Biswas, P. Tetrahedron 2003, 59, 2151–2157. (g) Loewe, W. Arch. Pharm. 1977, 310, 559–563
- (7) (a) Frasinyuk, M. S.; Khilya, V. P. Chem. Heterocycl. Compd. 1999, 35, 3–22. (b) Khilya, V. P.; Turov, A. V.; Tkschuk, T. M.; Shevchuk, L. I. Chem. Nat. Compd. 2001, 37, 307–310. (c) Sosnovskikh, V. Y.; Usachev, B. I.; Yu, A.; Barabanov, M. A. Synthesis-Stuttgart 2004, 942–948. (d) Xie, F. C.; Li, S. K.; Bai, D. L.; Lou, L. G.; Hu, Y. H. J. Comb. Chem. 2007, 9, 12–13. (e) Karpov, A. S.; Müller, T. J. J. Org. Lett. 2003, 5, 3451–3454.
- (8) Xie, F. C.; Pan, X.; Lin, S. J.; Hu, Y. H. Org. Biomol. Chem. 2010, 8, 1378–1381.
- (9) CCDC 772029 (4a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- (10) Vasselin, D. A.; Westwell, A. D.; Matthews, C. S.; Bradshaw, T. D.; Stevens, M. F. G. *J. Med. Chem.* **2006**, *49*, 3973–3981. CC100173B