DOI: 10.1002/ejoc.201001018

A Highly Stereoselective Total Synthesis of (+)-9-epi-Dictyostatin

Chiara Zanato,^[a] Luca Pignataro,^[a] Andrea Ambrosi,^[a] Zhongyan Hao,^[a] and Cesare Gennari*^[a]

Dedicated to Prof. José Barluenga on the occasion of his 70th birthday

Keywords: Antitumor agents / Asymmetric synthesis / Macrocycles / Natural products / Total synthesis

The total synthesis of (+)-9-epi-dictyostatin (1b), a diastereomer of the antimitotic marine-sponge-derived macrolide (-)-dictyostatin (1a), was achieved by creating 11 stereogenic centers and 4 stereogenic double bonds with a high level of stereocontrol. The yield for the 29-step longest linear

Introduction

The sponge-derived macrolide (-)-dictyostatin (1a, Scheme 1) has been reported to be a potent, paclitaxel-like inducer of tubulin polymerization and to inhibit human cancer cell proliferation at low nanomolar concentrations, with activity somewhat superior to the already very active discodermolide.^[1] With the recent withdrawal of discodermolide from clinical development^[2] the importance of dictvostatin further increases. Moreover, (-)-dictvostatin is also extremely potent against paclitaxel-resistant human cancer cell lines overexpressing the P-glycoprotein efflux pump.^[1] The structure of (-)-dictyostatin (1a) with full stereochemical assignments was established by Paterson and co-workers a few years ago (2004),^[3] and four total syntheses were completed in the period 2004-2007.^[4] A growing number of research groups have recently been involved in targeting this interesting natural product, and the syntheses of several analogs (e.g., desmethyldictyostatins, epi-dictyostatins, bis-epi-dictyostatins, hydrodictyostatins, methoxydictyostatins),^[5] discodermolide/dictyostatin hybrids,^[6] and various fragments and synthetic intermediates^[7] have been described. The development of dictyostatin analogs is an appealing goal from a pharmaceutical perspective, which provides interesting opportunities for structural simplification whilst maintaining biological potency, and for better understanding the structure-activity relationships of this class of antitumor agents. In this communica-

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201001018.

sequence from Roche ester was 1.53%. The final key steps to this unnatural product were the vinylzincate C10-C26 addition to aldehyde C1-C9 (leading surprisingly to a complete stereoselectivity for the 9*R*-epimer), followed by Yamaguchi macrolactonization and global deprotection.

Scheme 1. Retrosynthetic approach to (+)-9-epi-dictyostatin (1b), with key reactions involved and associated diastereomeric ratios.

[[]a] Università degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, Centro Interdipartimentale C.I.S.I., Via G. Venezian 21, 20133 Milan, Italy Fax: +39-02-50314072 E-mail: cesare.gennari@unimi.it

SHORT COMMUNICATION

tion, we describe a highly stereoselective total synthesis of (+)-9-*epi*-dictyostatin (**1b**), building on our prior work in this field.^[7j,7k] Our retrosynthetic approach, shown in Scheme 1, disconnects the macrolide ring into two key intermediates: C1–C9 aldehyde **2**, prepared from the corresponding alcohol,^[7k] and C10–C26 vinyl iodide **3**, prepared by taking advantage of a synthetic route similar to that reported for fragment C10–C23.^[7j]

Results and Discussion

The synthesis of C10–C26 fragment **3** started with the preparation of propargylic alcohol **7** (Scheme 2), for which we had previously reported^[7j] the direct addition of terminal alkyne **4** to the aldehyde obtained by reduction of Weinreb amide **5** using the Carreira asymmetric alkynylation protocol.^[8] However, this procedure proved capricious and poorly reproducible during scale-up. We thus opted for the coupling reaction between alkyne **4**^[7j] and Weinreb amide **5** (prepared according to Smith III and coworkers)^[9] to form ynone **6** (70%), which was then subjected to Noyori asymmetric transfer hydrogenation^[10] to give the desired alcohol **7** in excellent yield (98%) and with a >100:1 diastereomeric ratio (*dr*).

Acetal 7 was cleaved with DIBAL-H to generate diol 8 in 75% yield. Hydrogenation (under 4 bar H₂ pressure) of propargylic alcohol 8, in the presence of a catalytic amount (10%) of Wilkinson's catalyst, afforded the desired saturated compound 9 (70%), which was then silylated to give the fully protected tetraol 10 in 97% yield. Selective removal of the benzyl group over the PMB group (H₂, Raney-Ni, EtOH)^[11] furnished primary alcohol 11 in 81% yield. TPAP/NMO oxidation^[12] of alcohol 11 followed by a

Marshall-Tamaru palladium-catalyzed allenylzinc addition^[13] with the mesylate of (R)-3-butyn-2-ol gave alcohol 12 (82% over two steps) with a high level of diastereoselectivity (>98:2) in favor of the desired anti,syn adduct. TBS protection of alcohol 12 afforded alkyne 13, which was then lithiated with *n*BuLi and converted into the corresponding alkynyl iodide 14 in quantitative yield (Scheme 3). Reduction of compound 14 with diimide^[5d,14] provided (Z)vinyl iodide 15 as a single diastereoisomer (Z/E > 100:1) in excellent yield (92%). The primary tert-butyldimethylsilyl ether of 15 was selectively cleaved (HF-Pv, THF/Pv, 80%) to give compound 16, which was converted into aldehyde 17 by oxidation with Dess-Martin periodinane. The latter compound was treated with (1-bromoallyl)trimethylsilane Nozaki-Hiyama-Kishi under coupling conditions (CrCl₂),^[15] followed by a Peterson elimination (KOH, MeOH) to give C10-C26 fragment 3 in good yield (76%, 2 steps) and excellent diastereoselectivity (Z/E > 100:1).^[16]

Following Ramachandran's lead,^[4d] lithiation of (*Z*)vinyl iodide **3** (*t*BuLi) and subsequent treatment with dimethylzinc provided the corresponding lithium (*Z*)-vinylzincate,^[17] which was added to β -silyloxy aldehyde **2** to give the coupling product **18** in moderate yield (40%) and excellent diastereomeric ratio (>95:5; Scheme 4).^[18] On the basis of the structural assignment of final product **1b** (vide infra), the stereochemistry of the newly created stereogenic center in compound **18** turned out to be (9*R*). We found this outcome quite surprising, as the addition of the same (*Z*)-vinylzincate to a very similar aldehyde (with the ethyl ester in **2** instead of the methyl ester) was reported to give an excellent ratio in favor of the (9*S*) stereoisomer.^[4d]

In principle, compound **18** should be easily conveyed into the total synthesis of (-)-dictyostatin (1a) by oxidation of the (9R)-allylic alcohol to the corresponding 9-ketone, com-

Scheme 2. Synthesis of C10-C23 fragment 13.

Scheme 3. Synthesis of C10-C26 fragment 3.

Scheme 4. Completion of the synthesis of (+)-9-epi-dictyostatin (1b).

pletion of the synthetic sequence (as outlined in Scheme 4) and reduction of the enone to the (9*S*)-allylic alcohol (NaBH₄, CeCl₃·7H₂O, EtOH, -30 °C)^[4a] immediately before final deprotection.

The preference for the 1,3-*syn* diastereomer observed in compound **18** can be rationalized on the basis of 1,3-asymmetric induction models thoroughly investigated by Evans.^[19] Steric interactions in the aldehyde conformations are minimized when the β -alkyl substituent (**R** β) is oriented *anti* to the C α -C=O bond as in structures **A** and **B** shown in Scheme 5. Usually, β -OTBS substituted aldehydes afford preferentially the 1,3-*anti* diastereomer via polar model **A**, where dipoles are opposed.^[19] When aluminum Lewis acids (Me₂AlCl or MeAlCl₂) are used, exceptional chelation con-

trol reinforces the 1,3-*anti* stereochemical outcome (model C, axial attack).^[20] Recently, Curran and co-workers studied the addition of a (*Z*)-vinyllithium compound to aldehyde **2** and reported a ca. 2:1 1,3-*anti*/1,3-*syn* diastereomeric ratio.^[5i] Addition of other (*Z*)-vinyllithium compounds to similar aldehydes gave 1,3-*anti*/1,3-*syn* ratios ranging from 1.5:1 to 1:1.6.^[5d,5i] Apparently, models **B** and/ or **C** (equatorial attack), leading to the 1,3-*syn* diastereomer, start making a substantial impact in these addition reactions. Surprisingly, when a lithium dimethylalkenylzincate^[17,21] is used, the stereochemical outcome is determined only by models **B** and/or **C** (equatorial attack), leading to complete selectivity in favor of the 1,3-*syn* diastereomer.

SHORT COMMUNICATION

Scheme 5. 1,3-Asymmetric induction models.

The secondary alcohol of compound 18 was subsequently silvlated with TBSOTf to give the fully protected intermediate **19** (100%). Selective PMB removal with DDO provided compound 20 (90%), which was then saponified under basic conditions (KOH) to provide seco-acid 21 (100%). Yamaguchi macrolactonization^[22] of seco-acid **21** gave macrolide 22 in good yield (80%), together with a small amount (5–10%) of the (2*E*,4*E*)-dienoate ($J_{\rm H2,H3}$ = 15.2 Hz), probably formed through a reversible Michael addition of DMAP to the (2Z, 4E)-dienoate,^[4e] and which could be separated by flash chromatography. Global deprotection of the TBS groups with 3 N HCl/MeOH in THF (2.2:1 volume ratio)^[4d] caused an extensive degradation of the product, whereas the use of HF·Py in THF^[4c,4e] converted 22 cleanly into (+)-9-epi-dictyostatin (1b) in 70% yield. Our synthetic compound 1b produced analytical data (¹H NMR in CD₃OD, $[a]_D$) in disagreement with those recorded from an authentic sample of (-)-dictyostatin (1a) kindly provided by Prof. Ian Paterson (University of Cambridge, UK). Our synthetic compound 1b was identical (¹H NMR and ¹³C NMR in [D₆]benzene, [a]_D, HRMS, IR, R_f) to those described by Paterson^[5c] and Curran^[5i] for (+)-9-epi-dictyostatin (see the Supporting Information for full analytical details).

Conclusions

A highly stereoselective synthesis of (+)-9-*epi*-dictyostatin (**1b**) has been carried out in 1.53% overall yield over 29 steps (longest linear sequence from the Roche ester). Unfortunately, unnatural configuration at C9 is known to cause a substantial drop in cytotoxicity relative to dictyostatin (1a).^[5c,5i] The new synthetic route is flexible enough to allow (i) inversion at C9 by oxidation–reduction^[4a,4e] and (ii) the preparation of other non-natural analogs of dictyostatin [e.g., 12,13-bis-*epi*-dictyostatin by using the mesylate of (*S*)-3-butyn-2-ol in the Marshall–Tamaru palladium-catalyzed allenylzinc addition]. Future work will be focused on the synthesis of such analogs, which can be insightful for better understanding the structure–activity relationships of this class of antitumor agents.

Supporting Information (see footnote on the first page of this article): Experimental procedures and characterization data for new compounds along with copies of the NMR spectra (¹H, ¹³C).

Acknowledgments

We thank the Ministero dell'Università e della Ricerca for financial support (PRIN prot. 2008J4YNJY) and for a PhD fellowship (Borsa di dottorato 'Progetto giovani' to C.Z.). L.P. thanks Milan University for a postdoctoral fellowship ("Assegno di ricerca"). Z.H. (Lanzhou University, PRC) thanks the China Scholarship Council for a PhD mobility grant.

- a) R. A. Isbrucker, J. Cummins, S. A. Pomponi, R. E. Longley, A. E. Wright, *Biochem. Pharmacol.* 2003, 66, 75–82; b) C. Madiraju, M. C. Edler, E. Hamel, B. S. Raccor, R. Balachandran, G. Zhu, K. A. Giuliano, A. Vogt, Y. Shin, J.-H. Fournier, Y. Fukui, A. M. Brückner, D. P. Curran, B. W. Day, *Biochemistry* 2005, 44, 15053–15063; c) A. Canales, R. Matesanz, N. M. Gardner, J. M. Andreu, I. Paterson, J. F. Diaz, J. Jiménez-Barbero, *Chem. Eur. J.* 2008, 14, 7557–7569.
- [2] A. G. Novartis, Annual Report Pursuant to Section 13 or 15d of the Securities Exchange Act of 1934 for the fiscal year ended December 31, 2004, Securities Exchange Commission file number 1–15024, Form 20-F, filed Jan 28, 2005, p 42.
- [3] I. Paterson, R. Britton, O. Delgado, A. E. Wright, Chem. Commun. 2004, 632–633.
- [4] a) I. Paterson, R. Britton, O. Delgado, A. Meyer, K. G. Poullennec, Angew. Chem. Int. Ed. 2004, 43, 4629–4633; b) Y. Shin, J.-H. Fournier, Y. Fukui, A. M. Brückner, D. P. Curran, Angew. Chem. Int. Ed. 2004, 43, 4634–4637; c) G. W. O'Neil, A. J. Phillips, J. Am. Chem. Soc. 2006, 128, 5340–5341; d) P. V. Ramachandran, A. Srivastava, D. Hazra, Org. Lett. 2007, 9, 157–160; e) for an improved version of the total synthesis described in ref.^[4a] see: I. Paterson, R. Britton, O. Delgado, N. M. Gardner, A. Meyer, G. J. Naylor, K. G. Poullennec, Tetrahedron 2010, 66, 6534–6545.
- [5] a) Y. Shin, J.-H. Fournier, R. Balachandran, C. Madiraju, B. S. Raccor, G. Zhu, M. C. Edler, E. Hamel, B. W. Day, D. P. Curran, Org. Lett. 2005, 7, 2873-2876; b) Y. Fukui, A. M. Brückner, Y. Shin, R. Balachandran, B. W. Day, D. P. Curran, Org. Lett. 2006, 8, 301-304; c) I. Paterson, N. M. Gardner, K. G. Poullennec, A. E. Wright, Bioorg. Med. Chem. Lett. 2007, 17, 2443-2447; d) W.-H. Jung, C. Harrison, Y. Shin, J.-H. Fournier, R. Balachandran, B. S. Raccor, R. P. Sikorski, A. Vogt, D. P. Curran, B. W. Day, J. Med. Chem. 2007, 50, 2951-2966; e) Y. Shin, J.-H. Fournier, A. Brückner, C. Madiraju, R. Balachandran, B. S. Raccor, M. C. Edler, E. Hamel, R. P. Sikorski, A. Vogt, B. W. Day, D. P. Curran, Tetrahedron 2007, 63, 8537-8562; f) I. Paterson, N. M. Gardner, E. Guzmán, A. E. Wright, Bioorg. Med. Chem. Lett. 2008, 18, 6268-6272; g) J. L. Eiseman, L. Bai, W.-H. Jung, G. M-Letts, B. W. Day, D. P. Curran, J. Med. Chem. 2008, 51, 6650-6653; h) I. Paterson, N. M. Gardner, E. Guzmán, A. E. Wright, Bioorg. Med. Chem. 2009, 17, 2282-2289; i) W. Zhu, M. Jiménez, W.-H. Jung, D. P. Camarco, R. Balachandran, A. Vogt, B. W. Day, D. P. Curran, J. Am. Chem. Soc. 2010, 132, 9175-9187.

- [6] a) Y. Shin, N. Choy, R. Balachandran, C. Madiraju, B. W. Day, D. P. Curran, Org. Lett. 2002, 4, 4443–4446; b) I. Paterson, N. M. Gardner, Chem. Commun. 2007, 49–51; c) I. Paterson, G. J. Naylor, A. E. Wright, Chem. Commun. 2008, 4628–4630; d) I. Paterson, G. J. Naylor, T. Fujita, E. Guzmán, A. E. Wright, Chem. Commun. 2010, 261–263.
- [7] a) G. W. O'Neil, A. J. Phillips, Tetrahedron Lett. 2004, 45, 4253-4256; b) C. O. Kangani, A. M. Brückner, D. P. Curran, Org. Lett. 2005, 7, 379-382; c) J. Jägel, M. E. Maier, Synlett 2006, 693-696; d) E. Prusov, H. Röhm, M. E. Maier, Org. Lett. 2006, 8, 1025-1028; e) V. S. Baba, P. Das, K. Mukkantib, J. Iqbal, *Tetrahedron Lett.* **2006**, 47, 7927–7930; f) G. Moura-Letts, D. P. Curran, *Org. Lett.* **2007**, *9*, 5–8; g) V. Saibaba, A. Sampath, K. Mukkanti, J. Iqbal, P. Das, Synthesis 2007, 2797-2802; h) O. Sharon, C. Monti, C. Gennari, Tetrahedron 2007, 63, 5873-5878; i) A. K. Dilger, V. Gopalsamuthiram, S. D. Burke, J. Am. Chem. Soc. 2007, 129, 16273-16277; j) C. Monti, O. Sharon, C. Gennari, Chem. Commun. 2007, 4271-4273; k) C. Zanato, L. Pignataro, Z. Hao, C. Gennari, Synthesis 2008, 2158-2162; l) J. Esteban, A. M. Costa, A. Gomez, J. Vilarrasa, Org. Lett. 2008, 10, 65–68; m) L. C. Dias, D. J. P. Lima, C. C. S. Gonçalves, A. D. Andricopulo, Eur. J. Org. Chem. 2009, 1491-1494; n) H. L. Shimp, G. C. Micalizio, Tetrahedron 2009, 65, 5908–5915; o) J. S. Yadav, V. Rajender, Eur. J. Org. Chem. 2010, 2148-2156.
- [8] a) D. E. Frantz, R. Fässler, E. M. Carreira, J. Am. Chem. Soc. 2000, 122, 1806–1807; b) D. Boyall, D. E. Frantz, E. M. Carreira, Org. Lett. 2002, 4, 2605–2606.
- [9] A. B. Smith III, T. J. Beauchamp, M. J. LaMarche, M. D. Kaufman, Y. Qiu, H. Arimoto, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc. 2000, 122, 8654–8664.
- [10] S. Hashiguchi, A. Fujii, J. T. T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1995, 117, 7562–7563.
- [11] K. Horita, T. Yoshioka, T. Tanaka, Y. Oikawa, O. Yonemitsu, *Tetrahedron* 1986, 42, 3021–3028.

- [12] S. V. Ley, J. Norman, W. P. Griffith, S. P. Marsden, Synthesis 1994, 639–666.
- [13] a) Y. Tamaru, S. Goto, A. Tanaka, M. Shimizu, M. Kimura, Angew. Chem. Int. Ed. Engl. 1996, 35, 878–880; b) J. A. Marshall, Chem. Rev. 2000, 100, 3163–3185.
- [14] D. E. Chavez, E. N. Jacobsen, *Angew. Chem. Int. Ed.* 2001, 40, 3667–3670 and references cited therein.
- [15] I. Paterson, A. Schlapbach, Synlett 1995, 498–500 and references cited therein.
- [16] The compatibility of a terminal (Z)-vinyl iodide with the installation (modified Peterson olefination) of the terminal (Z)-diene had previously been demonstrated in the total synthesis of (–)-discodermolide, see: S. S. Harried, G. Yang, M. A. Strawn, D. C. Myles, J. Org. Chem. 1997, 62, 6098–6099.
- [17] D. R. Williams, W. S. Kissel, J. Am. Chem. Soc. 1998, 120, 11198–11199.
- [18] The crude reaction mixture was purified by flash chromatography to give, in order of elution: de-iodinated alkene, coupling product 18, and unreacted aldehyde 2. See the Supporting Information for details.
- [19] D. A. Evans, M. J. Dart, J. L. Duffy, M. G. Yang, J. Am. Chem. Soc. 1996, 118, 4322–4343.
- [20] D. A. Evans, B. D. Allison, M. G. Yang, C. E. Masse, J. Am. Chem. Soc. 2001, 123, 10840–10852.
- [21] Reactions of (Z)-disubstituted vinylzinc reagents with α-OTBS substituted aldehydes, in the presence of added RZnX (1.5 equiv.), have been shown to proceed through a Cram-chelation mechanism, see: G. R. Stanton, C. N. Johnson, P. G. Walsh, J. Am. Chem. Soc. 2010, 132, 4399–4408.
- [22] J. Inanage, H. Kuniko, S. Hiroko, T. J. Katsuki, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1979, 52, 1989–1993.

Received: July 19, 2010 Published Online: September 20, 2010