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Access to an anti,syn-1,5,7-Triol via Configuration-
Polyol Synthesis: The C15-C25 Fragment of Tetrafib

Ryan M. Friedrich, Gregory K. Friestad*?

Abstract: A configuration-encoded strategy provides unambiguous
stereocontrol in an efficient synthesis of 1,5-polyols. To access the
anti,syn-1,5,7-triol moiety in the C15-C25 fragment of tetrafibricin, a
fibrinogen receptor antagonist, a strategy is introduced which
sequences the 1,5-polyol synthesis with selective desilylation and
diastereoselective intramolecular conjugate addition. For tetrafibricin,
assembly of the C15-C25 anti-1,5-diol in five steps is followed by
the conjugate addition to introduce a syn-1,3-diol, completing the
anti,syn-1,5,7-triol  and  providing the functionality and
stereochemistry required for tetrafibricin synthesis.

Introduction

Tetrafibricin  (Figure 1), isolated from Streptomyces
neyagawaensis NR0577 in 1993, is a potent nonpeptidic
fibrinogen receptor antagonist (ICso = 46 nM) that inhibits platejet
aggregation by blocking GPIIb/llla receptors, making
potential drug candidate for arterial thrombotic diseases."
its stereochemical structure elucidation in 2003 using an NMR

tetrafibricin  have generated considerable int
laboratories of Cossy,”® Curran,”! and Krische® e
preparations of various fragments of the natural pr;
from the Roush group® led to a synthe
dihydrotetrafibricin methyl ester.[®

We previously reported an efficient route to a C2
fragment of tetrafibricin” which addressed the problem
stereocontrolled 1,5-polyol synthesis.®! Although many met
have been devised for the synth
assignment of 1,3-diol motifs,”™ few
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The alcohol configurations ar
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coded 1,5-

Marinomycin A

1. Biologically active natural product structures with chiral 1,5,7-triol

With the 1,5-polyol stereochemical obstacle surmounted, we
sought to expand this strategy in order to address 1,5,7-triol
systems that appear in tetrafibricin and in a variety of other
bioactive natural products (Figure 1) such as bastimolide A
(antimalarial)’®  and marinomycin A (antitumor,
antimicrobial)."® We noted that two iterations of our polyol
synthesis approach furnishes a 1,5,9-triol complemented by two
alkene functionalities, and hypothesized that the alkenes might
be engaged for the subsequent delivery of additional hydroxyl
equivalents, expanding the repertoire of polyols accessible by
our configuration-encoded approach. The feasibility of this would
require selectively addressing a new oxygen substituent to a
defined location, as implied in structures B and C (Figure 2b).
The Evans tactic of benzylidene acetal construction, exploiting a
free hydroxyl group to direct intramolecular conjugate addition to
an unsaturated ester,!"" appeared well-suited for this purpose.
Here we present a successful test of this hypothesis en route to
the anti,syn-1,5,7-triol which appears in the C15-C25 fragment
of tetrafibricin.
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(a) Prior Work:
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OTBS oTBS oTBS
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(b) This Study:
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C (1,5,7-triol, C15—-C25 of tetrafibricin)

Figure 2. a) Application of configuration-encoded 1,5-polyol synt]
C27-C40 fragment of tetrafibricin; b) New strategy to access 1
application to the C15—C25 fragment of tetrafibricin.

Results and Discussion

In the plan for the 1,5,7-triol synthesis, two configurati
encoded building blocks with differentiated hydroxyl groups were
required. After 1,5-polyol assembly, this would permit seleq
deprotection  and benzylidene
construction upon an unsaturated e
2b). We opted for selective desilylation, e
reactivity  of  tert-butyldimethylsilyl
butyldiphenylsilyl (TBDPS) g
building block 1 (Figure 2a)
1) from commerciall
tetrazol-5-thiol.  Thi
enantiopure a-silyloxy-y-s
and 89% yields respectiv
recrystallization)./”

(TB

uantities  of
(R)- d (S)-1 in 87%
over 4 steps (>99% ee after

For the build droxyl group differentiated
drin (R)-2 (Scheme 1),
ymmetric cyanohydrin construction en
f cyanohydrin (R)-2 with TBDPSCI,
yzed oxidation of the sulfide to
)-3 as a waxy solid (94% ee,

HPLC). The enantiomeric exces$ of (R)-3 was generated during
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cyanohydrin construction without any enrichment through
crystallization, and the 94% ee represents an improvement
versus the prior report.!'?

F'h\NzN\ 1) acrolein, EtzN, CH,Cl, (95%,
N
Hs)\\N 2) Ti(OIPr),, ligand A (10 m SPT
"PTSH" TMSCN (759 (R)-2
slow addition,

T

oTBS
KHMDS, (S)-1
“DME —e0°c. NC """ 0oPMB
5 (E/Z 90:10)
86%
1) DIBAL-H,
PhMe, —78 °C OTBDPS OTBS

HMDS, (R)-3, NC X719 0PVB

THF, -78 °C 6 (E,EIZE >95:5)

52%, 2 steps

1) DIBAL-H,
PhMe, —78 °C OTBDPS OTBS
-
2) KHMDS, MeSO,PT 23N " oPwmB
THF, -78 °C

83%, 2 steps

Scheme 2. Application of Iterative 1,5-Polyol Methodology to Carbon Skeleton
of C15—-C25 Fragment of Tetrafibricin
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1) DDQ, CH,Cly/H 0 (87%) OTBDPS OR 0 PhCHO oTBDRS 0" N0 O
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2) MnO,, KCN, AcOH, = " "OMe  KHMDS, THF
MeOH (80%) —5010 0 °C
9 (R = Tlej HC| 630/
10 (R=H) (96%) °

1) 9-BBN, then NaOAc, H,0, (68%)

2) (COCl),, DMSO, EtzN
CHyCly, —78 °C (85%)

Scheme 3. Diastereoselective Conjugate Addition to Access the anti,syn-1,5,7-Triol of the C15-C25

With the enantiopure a-silyloxy-y-sulfononitrile building
blocks (S)-1 and (R)-3 in hand, we turned to assembly of the
carbon skeleton of the C15-C25 fragment of tetrafibricin via
configuration-encoded 1,5-polyol synthesis (Scheme 2). Julia—
Kocienski coupling of protected glycolaldehyde 4" with (S)-1
afforded olefin 5 in 86% vyield (E/Z 90:10 after purification)./'*'®!
Nitrile reduction with DIBAL-H would reveal the aldehyde
needed for the next iteration. Unexpectedly,"® the hydrolysis of
the crude imine intermediate in this step was very sensitive to
acid-catalyzed racemization, readily observable after the n
coupling event."! After extensive exploration, a dilute (0.1
aqueous tartaric acid workup corrected this problem. PMmp
Julia—Kocienski coupling of the crude aldehyde with building
block (R)-3 gave anti-1,5-diol 6 in 52% yield over 2
excellent stereocontrol (E,E/Z,E >95:5, 19S/19R 97
DIBAL-H reduction of nitrile 6 behaved normally d
with no detected epimerization, and methyle
resulting a-silyloxy aldehyde with 5-(methyls
1H-tetrazole (MeSOPT)'! under Julia—Kociens
furnished 1,5,9-triol 7 with an 83% yield over 2 steps (
>95:5).12

stereochemistry established, attentio
remaining hydroxyl equivalent to co

conditions provided methyl e
desilylation of the TBS ether

via intramolecular
additions, construction of a
excellent diastereoselectivity
>95:5) and 15
1,3 configuration
constants observe
Jvicinal = 1131 113

In 63% yield with
e syn-1,3-diol moiety (syn/anti
cted alcohol 10.%? The syn-
two large vicinal coupling
t C18 (Jgeminar = 13.1 Hz,
consistent with precedent for similar

j,syn-1,5,7-triol  stereochemistry
secured, adjustment o ionality of the terminal olefin 11
would facilitate future fragment coupling studies. Selective

25
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Ph

Ph
(l) OTBDPS 07 O

jon (85% yield) gave aldehyde 13,
having terminal functionamty suitable for fragment coupling
efforts. This C15-C25 fragment is endowed with all the
reochemi eatures needed for synthesis of tetrafibricin.

receptor antagonist. Iterative configuration-encoded synthesis of
chiral 1,5-polyols was merged with diastereoselective
intramolecular conjugate addition, providing the anti,syn-1,5,7-
bunit of tetrafibricin with excellent stereocontrol. Fragment
ng studies and further efforts toward the total synthesis of
fibricin will be reported in due course.
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