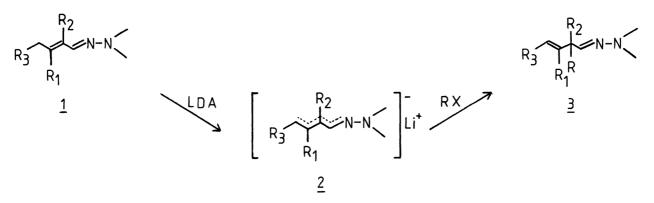
© 1988 The Chemical Society of Japan

CHEMISTRY LETTERS, pp. 1215-1218, 1988.

 α -Alkylation of Lithiated α,β -Unsaturated Aldehyde N,N-Dimethylhydrazones. Synthesis of α -Alkylated β,γ -Unsaturated Aldehydes¹)


Masakazu YAMASHITA,* Kaoru MATSUMIYA, Ken-ichi NAKANO, and Rikisaku SUEMITSU Department of Applied Chemistry, Doshisha University, Kamikyo-ku, Kyoto 602

Lithiated α, β -unsaturated aldehyde N,N-dimethylhydrazones reacted with alkyl halides accompanying a double bond rearrangement to give α -alkylated β, γ -unsaturated aldehyde N,Ndimethylhydrazones in satisfactory yields. Using this reaction, the sesquiterpene, 2,5,9-trimethyl-2-vinyl-4,8-decadienal was synthesized.

Alkylation reactions of aldehydes or ketones via the corresponding imines²) and hydrazones³ have been widely utilized to synthesize a variety of organic compounds. In respect to alkylation of α , β -unsaturated aldehydes, the free aldehydes⁴ and their aldimine derivatives⁵ have been used.

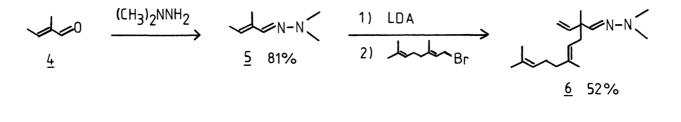
Previously, we reported the alkylation of hydrazones of various ketones including cyclic α , β -unsaturated ketones.⁶) In this communication, we wish to report the novel regioselective α -alkylation and rearrangement of α , β -unsaturated aldehyde N,N-dimethylhydrazones (<u>1</u>) to α -alkylated β , γ -unsaturated aldehydes (Scheme 1).⁷)

 α , β -Unsaturated aldehyde N,N-dimethylhydrazones <u>1</u> were conveniently prepared from the corresponding aldehydes and N,N-dimethylhydrazine using trifluoroacetic acid as a catalyst.

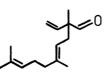
Scheme 1.

Run	Substrate	RX	Product ^{a)}	Yield/% b)
1	<u></u> N-N	≫~ _{Br}	√ N-N	49
2				63
3		∽∽∽~Br	N-N	69
4	N-N <	s≫_ _{Br}		46
5	I	O Br		40
6		Mel	Y N-N	46
7		H-Br	Y N-N	43
8	₩-N	≫~ _{Br}	N-N	64
9		⊘∕ [₿] r		68
10		Br	N-N	65
11	N-N	≫~ _{Br}		56
12				66

Table 1. Reaction of α , β -unsaturated aldehyde N,N-dimethylhydrazones with alkyl halides


a) All compounds were identified by their IR, ^{1}H -NMR, ^{13}C -NMR, and mass spectra. b) Isolated yields. A typical procedure is as follows: To a solution of lithium diisopropylamide (LDA) (4.8 mmol) in tetrahydrofuran (THF) (10 ml) was added 3-methyl-2-butenal N,N-dimethylhydrazone (4.8 mmol) at -5 °C under argon atmosphere. After stirring for 1 h, the yellowish solution was cooled to -5 °C again, and benzyl bromide (4.8 mmol) was added. The reaction mixture was further stirred for 3 h at room temperature and then treated with water. After usual work up, 2-benzyl-3-methyl-3-butenal N,N-dimethylhydrazone was obtained in 68% yield by column chromatography as a colorless liquid.

Lithiated α,β -unsaturated aldehyde N,N-dimethylhydrazones (<u>2</u>) reacted with a variety of alkyl halides accompanying a double bond rearrangement to afford α -alkylated β,γ -unsaturated aldehyde N,N-dimethylhydrazones (<u>3</u>). The results of the alkylation of hydrazones <u>1</u> were listed in Table 1. It is noteworthy that, in the reaction of the hydrazone of citral (Runs 4-7), the α,β -double bond rearranged to the methyl carbon to give a terminal methylene group exclusively, and that even 2-methyl-2-butenal N,N-dimethylhydrazone, which has no α -hydrogen, was α -alkylated to give the corresponding compounds (Runs 11,12).


On the other hand, attempts to alkylate the N,N-dimethylhydrazone of cinnamaldehyde and benzaldehyde gave no identifiable product.

Using this new reaction, the synthesis of 2,5,9-trimethyl-2-vinyl-4,8decadienal $(\underline{7})$,⁸⁾ which is considered to be a component of an essential oil of a beefsteak plant, was conducted (Scheme 2). 2-Methyl-2-butenal ($\underline{4}$) reacted with N,N-dimethylhydrazine to give 2-methyl-2-butenal N,N-dimethylhydrazone ($\underline{5}$) in 81% yield. To the THF solution of 1 equiv. of LDA at -5 °C, was added hydrazone $\underline{5}$, followed by 1-bromo-3,7-dimethyl-2,6-octadiene to provide the corresponding hydrazone ($\underline{6}$) in 52% yield, which was readily converted to the desired aldehyde $\underline{7}$ after hydrolysis in 72% yield.

Application of this reaction to syntheses of more complex terpenoids are under investigation.

HClaq.

72%

The authors wish to thank Takasago Co. for sending the spectral data of compound $\underline{7}$.

References

- 1) Organic synthesis via dialkylhydrazones, Part 4. For Part 3, see Ref. 6.
- 2) G. Stork and S. R. Dowd, J. Am. Chem. Soc., 85, 2178 (1963).
- 3) E. J. Corey and D. Enders, Chem. Ber., <u>111</u>, 1337 (1978); E. J. Corey and D. Enders, ibid., <u>111</u>, 1362 (1978).
- 4) S. A. G. de Graaf, P. E. R. Oosterhoff, and A. van der Gen, Tetrahedron Lett., <u>1974</u>, 1653; P. Groenewegen, H. Kallenberg, and A. van der Gen, Tetrahedron Lett., <u>1978</u>, 491; L. A. Kheifits, A. V. Gurevich, N. V. Lepikhina, and N. A. Novikov, Maslo-Zhir. Prom-st., 1980, 24.
- 5) K. Takabe, H. Fujiwara, T. Katagiri, and J. Tanaka, Tetrahedron Lett., <u>1975</u>, 1237; G. R. Kieczykowski, R. H. Schlessinger, and R. B. Sulsky, Tetrahedron Lett., <u>1976</u>, 597.
- M. Yamashita, K. Matsumiya, M. Tanabe, and R. Suemitsu, J. Jpn. Oil Chem. Soc. (Yukagaku), <u>37</u>, 245 (1988); M. Yamashita, K. Matsumiya, M. Tanabe, and R. Suemitsu, Bull. Chem. Soc. Jpn., <u>58</u>, 407 (1985); M. Yamashita, K. Matsumiya, K. Tanji, and R. Suemitsu, J. Jpn. Oil Chem. Soc. (Yukagaku), <u>35</u>, 1041 (1986).
- Alkylation of crotonaldehyde N,N-dimethylhydrazone has been reported: see Ref.
 3.
- 8) Y. Uji, T. Toyoda, and S. Muraki, 31st Symposium on the Chemistry of Terpenes, Essential Oils, and Aromatics, Kyoto, September 1987, Abstr., No. 1102.

(Received March 30, 1988)