Phosphazene Base-Catalyzed Intramolecular Cascade Reactions of Aryl-Substituted Enynes

Jian-Sheng Tang,^{a,b} Ye-Xiang Xie,^a Zhi-Qiang Wang,^a Chen-Liang Deng,^a Jin-Heng Li*^a

^a Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, P. R. of China

Fax +86(731)88872101; E-mail: jhli@hunnu.edu.cn

^b Mathematics and Science Department, Hunan First Normal University, Changsha, 410205, P. R. of China

Received 6 April 2010; revised 28 May 2010

Abstract: A novel method for the synthesis of 9-aryl-3a,4-dihydronaphtho[2,3-*c*]furan-1(3*H*)-ones has been developed by P_{4} -*t*-Bu-catalyzed intramolecular cascade reactions of enynes. In the presence of a catalytic amount of phosphazene P_{4} -*t*-Bu base, a variety of 3-arylallyl 3-arylpropiolates underwent the cascade cyclization reaction smoothly in moderate to excellent yields.

Key words: P_4 -*t*-Bu base, cascade cyclization reaction, 9-aryl-3a,4-dihydronaphtho[2,3-*c*]furan-1(3*H*)-one, 3-arylallyl 3-arylpropiolate

The cascade reaction strategy is of continuing interesting in the field of organic chemistry because it is a valuable route for the synthesis of polysubstituted polycyclic compounds.^{1–3} Our interest is focused on the intramolecular Diels-Alder reactions of aryl-substituted enynes 1, which proceeds via a cascade cyclization process (Scheme 1). Traditionally, there are two transformations for these purposes: one involves acetic anhydride mediated cyclization via the activation of the ortho-arene C-H bond at the terminal alkene (Scheme 1),² and the other is acetic anhydride^{2h} or base-mediated cyclization employing the ortho-arene C-H bond at the terminal alkyne as a reaction partner.³ For example, Klemm and Gopinath described intramolecular Diels-Alder cyclization of 3,4-(methylenedioxy)cinnamyl 3,4,5-trimethoxyphenylpropiolate afford γ -apopicropodophyllin in 48% yield using acetic anhydride as the catalyst and solvent.^{2a} In 1972, Laird and Ollis employed allylpropynyl ammonium cations as the substrates, shifting regioselectivity toward the orthoarene C-H bond at the terminal alkyne in the presence of excess sodium methoxide.^{3a} Subsequently, several papers have been reported that extend these routes in organic synthesis, but the scope has not yet been examined and it is often restricted to special substrates with unsatisfactory yields. Moreover, the high acetic anhydride or base loadings, resulting in toxic byproducts, hardly make the two transformations attractive procedures. Therefore, the development of a novel, catalytic route for the intramolecular cascade cyclization of enynes remains a challenging area. Here, we report the first intramolecular cascade cyclization protocol for the synthesis of 9-aryl-3a,4-dihy-

SYNTHESIS 2010, No. 18, pp 3204–3210 Advanced online publication: 12.07.2010 DOI: 10.1055/s-0030-1258172; Art ID: F06210SS © Georg Thieme Verlag Stuttgart · New York dronaphtho[2,3-*c*]furan-1(3*H*)-one using a catalytic amount of P_4 -*t*-Bu (commercially available) (Scheme 1).^{4,5} It is noteworthy that these products are a prevalent motif in many naturally occurring and biologically active compounds, such as the known antiviral and antitumor agents daurinol and retrochinensin.⁶

Scheme 1 Intramolecular cascade reactions

Our initial investigation began with the cyclization of cinnamyl 3-phenylpropiolate (1a) to optimize the reaction conditions (Table 1). Generally, base-mediated intramolecular Diels-Alder reactions of aryl-substituted enyne 1a are used with the ortho-arene C-H bond at the terminal alkyne as a reaction partner.³ However, we found that only product 2a was obtained by activating the *ortho*-arene C-H bond at the terminal alkene using various bases (entries 1-13). The results demonstrated that the amount of potassium carbonate affected the reaction (entries 1-4). While treatment of substrate 1a with two equivalents of potassium carbonate afforded the target product 2a in 20% yield (entry 1), 5 equivalents of potassium carbonate enhanced the yield to 80% (entry 3), and an identical result was obtained in the presence of six equivalents of potassium carbonate (entry 4). Prompted by these results, a variety of other bases, such as Cs₂CO₃, K₃PO₄, NaOH, NaOEt, Table 1

Me ₂ N-	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $		2a N N P N N P N N]
Entry	Base (equiv)	Solvent	Temp (°C)	Isolated yield (%)
1	K ₂ CO ₃ (2)	DCE	100	20
2	$K_{2}CO_{3}(4)$	DCE	100	52
3	$K_{2}CO_{3}(5)$	DCE	100	80
4	K ₂ CO ₃ (6)	DCE	100	75
5	Cs ₂ CO ₃ (5)	DCE	100	44
6	K ₃ PO ₄ (5)	DCE	100	61
7	NaOH (5)	DCE	100	trace
8	NaOEt (5)	DCE	100	70
9	DABCO (5)	DCE	100	20
10	DBU (5)	DCE	100	35
11 ^b	P ₄ - <i>t</i> -Bu (0.05)	DCE	100	52
12 ^b	P ₄ - <i>t</i> -Bu (0.1)	DCE	100	82
13 ^b	P ₄ - <i>t</i> -Bu (0.2)	DCE	100	46
14 ^b	P1 (0.1)	DCE	100	80
15 ^b	Ph ₃ P (0.1)	DCE	100	trace
16	K ₂ CO ₃ (5)	toluene	100	45
17	K ₂ CO ₃ (5)	THF	100	53
18	K ₂ CO ₃ (5)	DMF	100	trace
19	K ₂ CO ₃ (5)	DCE	80	34
20	K ₂ CO ₃ (5)	DCE	120	65

Screening Optimal Conditions⁴

 $^{\rm a}$ Conditions: 1a (0.2 mmol), base, solvent (2 mL), 24 h. $^{\rm b}$ For 60 h.

DABCO, DBU, and P_4 -*t*-Bu, were examined (entries 5–13). We found that all but one were inferior to potassium carbonate (entries 5–10). To our delight, 10 mol% of P_4 -*t*-Bu, an organic superbase, gave the best results after prolonged the reaction time (entry 12). Identical results were observed using P1 (BEMP) base (entry 14). Triphenylphosphine was also evaluated as the catalyst, however,

no reaction occurred (entry 15). Subsequently, a number of other solvents, including toluene, tetrahydrofuran, and *N*,*N*-dimethylformamide, were tested, and they were less effective than 1,2-dichloroethane (entries 16–18). Finally, the effect of the reaction temperature was evaluated, and it turned out that both 80 °C and 120 °C decreased the yield (entries 19 and 20). The structure of **2a** was unambiguously confirmed by X-ray single-crystal diffraction analysis (Figure 1).⁷

Figure 1 ORTEP diagram of the single-crystal X-ray structure of compound $\mathbf{2a}$

With the optimized reaction conditions in hand, the enyne scope was investigated (Table 2).8 Initially, a series of 3arylallyl 3-phenylpropiolates 1b-d, bearing electron-rich or electron-deficient arylallyl groups, were treated with P₄-*t*-Bu smoothly in good yields (entries 1–3). Gratifyingly, a moderate yield of 2e was still isolated from heteroarylallyl substrate 1e (entry 4). The results showed that several functional groups, such as methyl, methoxy, iodo, bromo, fluoro, acetyl, and nitro groups, on the aryl ring of the 3-arylpropiolate moiety were tolerated (entries 5-15). The cyclization reaction of substrates **1f**-**h** with a *p*-, *m*-, or o-methyl group, for instance, successfully proceeded with P_4 -t-Bu in moderate yields (entries 5–7). It is pleasing to observe that the optimized conditions were compatible with halo-substituted substrates 1k-m (entries 10-12). Electron-deficient substrates 1n-p also underwent the cyclization reaction with P₄-t-Bu in excellent yields (entries 13-15). It was noted that cinnamyl 3-(thiophen-2yl)propiolate (1q) was suitable for the reaction, affording the corresponding product **2q** in 90% yield (entry 16). In the presence of P₄-t-Bu, two N-cinnamyl-3-phenylpropiolamides 1r and 1s were also consistent with the reaction conditions, and they were transformed into the desired products 2r and 2s in 70% and 81% yields, respectively (entries 17 and 18). However, (E)-[3-(cinnamyloxy)prop-1-ynyl]benzene was not a suitable substrate under the optimized conditions.

Table 2 P_4 -t-Bu-Catalyzed Intramolecular Cyclization Reactions ofEnynes 1^a

Synthesis 2010, No. 18, 3204–3210 © Thieme Stuttgart · New York

Table 2 P_4 -t-Bu-Catalyzed Intramolecular Cyclization Reactions ofEnynes 1^a (continued)

^a Reaction conditions: **1** (0.2 mmol), P₄-*t*-Bu (10 mol%), DCE (2 mL), 100 °C, 60 h.

^b Isolated yield.

Compared with the results for the base-mediated intramolecular Diels–Alder reactions of aryl-substituted enynes $1,^3$ different chemoselectivity was observed in the present reaction: the chemoselectivity was shifted towards the *ortho*-arene C–H bond at the terminal alkene, which is identical to the acetic anhydride mediated cyclization process. Thus, we deduced that the present reaction proceeds via a Diels–Alder mechanism,² and the role of P₄-*t*-Bu base is as an acid scavenger that promotes the reaction by a proton-transfer process (Scheme 2).

Scheme 2 A possible mechanism

In summary, we have disclosed phosphazene P_4 -*t*-Bu base as an efficient catalyst for the intramolecular cascade cyclization of enynes. This work is the first to demonstrate that the intramolecular Diels–Alder cyclization reaction of enynes can be carried out successfully using a catalytic amount of phosphazene P_4 -*t*-Bu base. Importantly, this new route allows the base-catalyzed mediated intramolecular cascade cyclization of enynes by activating the *ortho*arene C–H bond at the terminal alkene, not the *ortho*arene C–H bond at the terminal alkyne.³

NMR spectroscopy was performed on a Bruker-500 spectrometer operating at 500 MHz (¹H NMR) and 125 MHz (¹³C NMR), TMS internal standard and CDCl₃ solvent. MS analysis was performed by GC-MS analysis (Shimadzu GCMS-QP2010 plus). Melting points are uncorrected.

Phosphazene Base Catalyzed Intramolecular Cascade Reactions of Aryl-Substituted Enynes; Typical Procedure

3-Arylallyl 3-arylpropiolate 1 (0.2 mmol), P_{4^-t} -Bu (10 mol%), and DCE (2 mL) were added to a Schlenk tube and the soln was stirred at 100 °C for the indicated time until complete consumption of start-

ing material (TLC and GC-MS monitoring). When the reaction was finished, the mixture was washed with brine and extracted with Et_2O . The combined extracts were dried (anhyd Na_2SO_4) and evaporated in vacuo. The residue was purified by flash column chromatography (silica gel, hexane–EtOAc) to afford the desired product.

9-Phenyl-3a,4-dihydronaphtho[2,3-c]furan-1(3H)-one (2a)^{6e}

White solid; mp 182.1–183.3 °C.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.46-7.38$ (m, 3 H), 7.34–7.29 (m, 4 H), 7.18 (t, J = 7.5 Hz, 1 H), 6.95 (d, J = 8.0 Hz, 1 H), 4.73 (t, J = 9.0 Hz, 1 H), 4.04 (t, J = 8.5 Hz, 1 H), 3.50–3.42 (m, 1 H), 3.07, 3.05 (dd, J = 6.5, 6.5 Hz, 1 H), 2.90, 2.87 (dd, J = 15.0, 15.0 Hz, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 168.2, 147.3, 135.9, 135.4, 134.2, 129.8, 129.1, 128.5, 128.0, 127.8, 127.2, 126.4, 122.1, 71.2, 35.5, 33.0.

LRMS (EI, 70 eV): m/z (%) = 262 (M⁺, 100), 231 (46), 217 (72), 203 (70), 101 (41).

7-Methyl-9-phenyl-3a,4-dihydronaphtho[2,3-*c*]furan-1(3*H*)-one (2b)

White solid; mp 165.8–167.0 °C.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.45–7.44 (m, 3 H), 7.29–7.26 (m, 2 H), 7.17 (d, *J* = 7.5 Hz, 1 H), 7.11 (d, *J* = 8.0 Hz, 1 H), 6.75 (s, 1 H), 4.71 (t, *J* = 9.0 Hz, 1 H), 4.03 (t, *J* = 8.5 Hz, 1 H), 3.46–3.38 (m, 1 H), 3.03, 3.01 (dd, *J* = 6.5, 6.5 Hz, 1 H), 2.84, 2.81 (dd, *J* = 15.5, 15.5 Hz, 1 H), 2.22 (s, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 168.3, 147.5, 136.9, 135.8, 134.3, 132.4, 130.5, 129.7, 128.5, 128.0, 127.9, 127.8, 122.1, 71.1, 35.8, 32.7, 21.1.

LRMS (EI, 70 eV): m/z (%) = 276 (M⁺, 53), 215 (27), 202 (29), 71 (77), 57 (100), 43 (98).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₆O₂: 276.1150; found: 276.1148.

7-Methoxy-9-phenyl-3a,4-dihydronaphtho
[2,3-c]furan-1(3H)-one $(2\mathbf{c})^8$

White solid; mp 142.0-143.8 °C.

IR (KBr): 1745 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.43–7.42 (m, 3 H), 7.31–7.29 (m, 2 H), 7.19 (d, *J* = 7.5 Hz, 1 H), 6.85–6.83 (m, 1 H), 6.50 (d, *J* = 2.5 Hz, 1 H), 4.71 (t, *J* = 9.0 Hz, 1 H), 4.03 (t, *J* = 7.5 Hz, 1 H), 3.65 (s, 3 H), 3.46–3.38 (m, 1 H), 3.02, 2.99 (dd, *J* = 7.0, 6.5 Hz, 1 H), 2.81, 2.77 (dd, *J* = 15.0, 15.0 Hz, 1 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 168.2, 158.7, 147.2, 137.0, 134.1, 129.7, 128.7, 128.5, 127.8, 127.4, 122.6, 115.3, 114.6, 71.1, 55.3, 35.9, 32.1.

LRMS (EI, 70 eV): m/z (%) = 292 (M⁺, 100), 247 (47), 231 (14), 215 (28), 203 (20).

7-Nitro-9-phenyl-3a,4-dihydronaphtho
[2,3-c]furan-1(3H)-one $\rm (2d)$

Yellow solid; mp 188.0-189.9 °C.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 8.16-8.14$ (m, 1 H), 7.80 (d, J = 2.5 Hz, 1 H), 7.49–7.46 (m, 4 H), 7.30–7.26 (m, 2 H), 4.76 (t, J = 7.5 Hz, 1 H), 4.08 (t, J = 9.0 Hz, 1 H), 3.55–3.47 (m, 1 H), 3.23, 3.20 (dd, J = 6.5, 6.5 Hz, 1 H), 2.97, 2.94 (dd, J = 15.5, 15.5 Hz, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 167.3, 147.5, 145.3, 142.3, 137.4, 132.6, 130.0, 129.3, 128.9, 128.3, 124.4, 124.3, 123.4, 70.9, 35.2, 32.8.

LRMS (EI, 70 eV): *m*/*z* (%) = 307 (M⁺, 100), 290 (33), 260 (17), 215 (36), 101 (35).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₃NO₄: 307.0845; found: 307.0848.

4-Phenyl-7a,8-dihydrothieno[2,3-f][2]benzofuran-5(7H)-one $(2e)^{6e}$

Yellow solid; mp 136.5–138.0 °C.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.51–7.49 (m, 1 H), 7.48–7.38 (m, 4 H), 7.07 (t, *J* = 6.0 Hz, 1 H), 6.72 (d, *J* = 5.0 Hz, 1 H), 4.71 (t, *J* = 7.5 Hz, 1 H), 4.05 (t, *J* = 9.0 Hz, 1 H), 3.69–3.60 (m, 1 H), 3.24, 3.20 (dd, *J* = 8.0, 7.5 Hz, 1 H), 2.85, 2.81 (dd, *J* = 16.5, 16.5 Hz, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 168.0, 144.2, 139.2, 138.1, 134.3, 129.4, 128.8, 127.8, 126.8, 122.9, 117.5, 70.5, 37.4, 27.8.

LRMS (EI, 70 eV): m/z (%) = 268 (M⁺, 38), 223 (33), 165 (11), 43 (100).

9-(4-Tolyl)-3a,4-dihydronaphtho[**2,3-***c*]**furan-1**(**3***H*)-**one** (**2f**) White solid; mp 151.1–152.8 °C.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.30-7.26$ (m, 2 H), 7.26–7.20 (m, 2 H), 7.20–7.17 (m, 3 H), 6.99 (d, J = 7.5 Hz, 1 H), 4.72 (t, J = 9.0 Hz, 1 H), 4.04 (t, J = 7.5 Hz, 1 H), 3.48–3.40 (m, 1 H), 3.06, 3.01 (dd, J = 6.5, 6.5 Hz, 1 H), 2.88, 2.86 (dd, J = 15.5, 15.5 Hz, 1 H), 2.42 (s, 3 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 168.3, 147.6, 138.4, 136.1, 135.5, 131.2, 129.7, 129.2, 128.7, 128.0, 127.2, 121.8, 71.1, 35.6, 33.1, 21.4.

LRMS (EI, 70 eV): m/z (%) = 276 (M⁺, 100), 231 (98), 217 (58), 202 (60), 101 (26).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₆O₂: 276.1150; found: 276.1149.

9-(3-Tolyl)-3a,4-dihydronaphtho[**2,3-***c*]**furan-1**(*3H*)**-one** (**2g**) White solid; mp 152.2–153.0 °C.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.34–7.24 (m, 3 H), 7.22–7.19 (m, 1 H), 7.18–7.09 (m, 3 H), 6.97 (d, *J* = 8.0 Hz, 1 H), 4.72 (t, *J* = 7.5 Hz, 1 H), 4.03 (t, *J* = 8.0 Hz, 1 H), 3.48–3.40 (m, 1 H), 3.06, 3.03, (dd, *J* = 6.5, 6.5 Hz, 1 H), 2.88, 2.85 (dd, *J* = 15.5, 15.5 Hz, 1 H), 2.38 (s, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 168.2, 147.5, 137.4, 136.0, 135.4, 134.2, 129.8, 129.3, 129.2, 128.0, 127.8, 127.2, 122.0, 71.7, 35.6, 33.1, 21.4.

LRMS (EI, 70 eV): m/z (%) = 276 (M⁺, 100), 231 (93), 215 (49), 202 (62), 101 (23).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₆O₂: 276.1150; found: 276.1145.

9-(2-Tolyl)-3a,4-dihydronaphtho[2,3-c]furan-1(3H)-one (2h)

White solid; mp 126.9–128.2 °C.

IR (KBr): 1748 cm^{-1} .

¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.32-7.26$ (m, 4 H), 7.22–7.14 (m, 2 H), 6.91 (d, J = 7.5 Hz, 1 H), 6.80 (d, J = 8.0 Hz, 1 H), 4.74 (t, J = 6.5 Hz, 1 H), 4.07 (t, J = 9.0 Hz, 1 H), 3.51–3.46 (m, 1 H), 3.09,

3.08 (dd, *J* = 3.0, 3.5 Hz, 1 H), 2.92, 2.88 (dd, *J* = 16.0, 15.0 Hz, 1 H), 2.24 (s, 3 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 168.1, 168.0, 146.2, 137.0, 135.4, 135.2, 135.1, 134.7, 134.0, 131.2, 130.2, 130.1, 130.0, 129.9, 129.7, 128.6, 128.5, 128.2, 128.2, 128.0, 127.9, 127.7, 127.5, 126.5, 125.8, 125.4, 123.0, 122.7, 71.4, 35.3, 32.8, 19.5.

LRMS (EI, 70 eV): *m*/*z* (%) = 276 (M⁺, 74), 231 (100), 215 (84), 202 (63), 101 (21).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₆O₂: 276.1150; found: 276.1148.

9-(4-Methoxyphenyl)-3a,4-dihydronaphtho[2,3-c]furan-1(3H)-one (2i)

White solid; mp 130.0–131.5 °C.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.32-7.26$ (m, 4 H), 7.20–7.17 (m, 1 H), 7.01 (d, J = 7.5 Hz, 1 H), 6.96 (d, J = 7.5 Hz, 2 H), 4.72 (t, J = 8.5 Hz, 1 H), 4.04 (t, J = 8.5 Hz, 1 H), 3.86 (s, 3 H), 3.45–3.40 (m, 1 H), 3.05, 3.02 (dd, J = 6.5, 6.5 Hz, 1 H), 2.88, 2.85 (dd, J = 15.5, 15.5 Hz, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 168.4, 159.9, 147.4, 136.2, 135.6, 131.5, 129.8, 129.3, 128.0, 127.2, 126.2, 121.4, 113.2, 71.1, 55.2, 35.7, 33.1.

LRMS (EI, 70 eV): m/z (%) = 292 (M⁺, 100), 261 (10), 247 (62), 203 (32), 189 (39).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₆O₃: 292.1099; found: 292.1105.

9-(2-Methoxyphenyl)-3a,4-dihydronaphtho[2,3-c]furan-1(3H)one (2j)

Colorless oil.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.42-7.39$ (m, 1 H), 7.29–7.26 (m, 2 H), 7.14–7.09 (m, 1 H), 7.00–6.91 (m, 4 H), 4.70 (t, J = 8.5 Hz, 1 H), 4.05 (t, J = 9.0 Hz, 1 H), 3.55–3.38 (m, 1 H), 3.07–3.02 (m, 1 H), 3.00–2.86 (m, 1 H), 2.04 (s, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 171.1, 168.3, 167.9, 157.8, 156.4, 144.5, 142.9, 135.5, 135.4, 135.3, 134.8, 131.9, 130.0, 129.8, 129.6, 129.6, 129.4, 128.6, 128.0, 127.5, 127.3, 127.0, 124.0, 123.4, 123.0, 122.8, 120.4, 120.1, 111.1, 111.0, 71.2, 71.2, 55.7, 55.5, 35.4, 35.3, 32.9, 32.8.

LRMS (EI, 70 eV): *m/z* (%) = 292 (M⁺, 100), 261 (41), 247 (31), 231 (43), 215 (23), 202 (36), 101 (22).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₆O₃: 292.1099; found: 292.1100.

9-(4-Iodophenyl)-3a,4-dihydronaphtho[2,3-c]furan-1(3H)-one (2k)

Yellow solid; mp 223.7-225.1 °C.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.77 (d, *J* = 8.5 Hz, 2 H), 7.33–7.28 (m, 2 H), 7.18 (t, *J* = 8.5 Hz, 1 H), 7.06–7.03 (m, 2 H), 6.93 (d, *J* = 8.0 Hz, 1 H), 4.73 (t, *J* = 8.5 Hz, 1 H), 4.04 (t, *J* = 8.0 Hz, 1 H), 3.48–3.40 (m, 1 H), 3.07, 3.04 (dd, *J* = 7.0, 7.0 Hz, 1 H), 2.88, 2.85 (dd, *J* = 16.0, 15.0 Hz, 1 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 168.1, 146.1, 137.0, 135.4, 133.7, 131.7, 130.1, 128.9, 128.2, 127.4, 122.5, 94.8, 71.2, 35.6, 32.9.

LRMS (EI, 70 eV): m/z (%) = 388 (M⁺, 100), 231 (34), 217 (39), 202 (73), 101 (30).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₃IO₂: 387.9960; found: 387.9956.

9-(2-Bromophenyl)-3a,4-dihydronaphtho[2,3-c]furan-1(3H)one (2l)

Pale-yellow solid; mp 137.5-139.0 °C.

IR (KBr): 1748 cm^{-1} .

¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.48-7.40$ (m, 8 H), 4.31-4.27 (m, 1 H), 4.22-4.17 (m, 1 H), 4.05-4.02 (m, 1 H), 3.94, 3.92 (dd, J = 3.5, 5.0 Hz, 1 H), 3.80, 3.79 (dd, J = 8.5, 8.5 Hz, 1 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 167.9, 145.5, 135.4, 135.1, 134.4, 132.9, 132.5, 131.6, 129.9, 128.2, 127.4, 126.9, 124.2, 123.8, 122.1, 71.4, 35.3, 32.7.

LRMS (EI, 70 eV): *m/z* (%) = 342 (M⁺ + 2, 1), 340 (M⁺, 1), 261 (100), 233 (10), 215 (15), 202 (68).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₃BrO₂: 340.0099; found: 340.0093.

9-(4-Fluorophenyl)-3a,4-dihydronaphtho[2,3-c]furan-1(3H)one (2m)

Yellow solid; mp 175.1–176.9 °C.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.34-7.28$ (m, 4 H), 7.26–7.24 (m, 1 H), 7.21–7.10 (m, 2 H), 6.94 (d, J = 7.5 Hz, 1 H), 4.74 (t, J = 9.0 Hz, 1 H), 4.05 (t, J = 8.5 Hz, 1 H), 3.49–3.41 (m, 1 H), 3.07, 3.04 (dd, J = 6.5, 7.0 Hz, 1 H), 2.89, 2.86 (dd, J = 15.5, 15.5 Hz, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 168.2, 162.9 (d, *J* = 246.5 Hz, 1 C), 146.3, 135.7, 135.4, 129.9, 128.9, 128.1, 127.3, 122.4, 115.0, 114.9, 71.2, 35.6, 32.9.

LRMS (EI, 70 eV): m/z (%) = 280 (M⁺, 100), 249 (31), 221 (74).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₃FO₂: 280.0900; found: 280.0899.

9-(4-Acetylphenyl)-3a,4-dihydronaphtho[2,3-c]furan-1(3H)-one (2n)

White solid; mp 170.9–172.1 °C.

IR (KBr): 1741, 1678 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 8.20$ (d, J = 8.5 Hz, 2 H), 7.41– 7.39 (m, 2 H), 7.34–7.29 (m, 2 H), 7.19–7.16 (m, 1 H), 6.87 (d, J = 7.5 Hz, 1 H), 4.75 (t, J = 7.5 Hz, 1 H), 4.06 (t, J = 9.0 Hz, 1 H), 3.51–3.43 (m, 1 H), 3.09, 3.07 (dd, J = 6.5, 6.5 Hz, 1 H), 2.89, 2.88 (dd, J = 16.0, 15.0 Hz, 1 H), 2.65 (s, 3 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 197.8, 168.1, 146.1, 136.8, 135.4, 134.7, 130.1, 128.8, 128.4, 128.2, 128.1, 127.6, 127.4, 123.0, 71.3, 35.6, 32.9, 26.6.

LRMS (EI, 70 eV): *m/z* (%) = 304 (M⁺, 100), 289 (72), 261 (12), 231 (48), 217 (35), 202 (62), 101 (30).

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₁₆O₃: 304.1099; found: 304.1097.

9-(3-Acetylphenyl)-3a,4-dihydronaphtho[2,3-c]furan-1(3H)-one (20)

White solid; mp 170.0–171.6 °C.

IR (KBr): 1740, 1675 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 8.04-8.02$ (m, 1 H), 7.90–7.83 (m, 1 H), 7.59–7.53 (m, 2 H), 7.37–7.29 (m, 2 H), 7.19–7.16 (m, 1 H), 6.69 (d, J = 9.0 Hz, 1 H), 4.74 (t, J = 8.5 Hz, 1 H), 4.06 (t, J = 6.5 Hz, 1 H), 3.52–3.44 (m, 1 H), 3.09, 3.06 (dd, J = 6.5, 6.5 Hz, 1 H), 2.91, 2.88 (dd, J = 15.5, 16.0 Hz, 1 H), 2.61 (s, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 197.7, 168.0, 146.0, 139.4, 136.9, 135.3, 135.2, 130.4, 130., 128.8, 128.2, 128.0, 127.9, 127.6, 127.4, 123.0, 71.3, 35.5, 32.8, 26.6.

LRMS (EI, 70 eV): *m/z* (%) = 304 (M⁺, 100), 289 (65), 261 (13), 217 (37), 202 (56), 101 (43).

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₁₆O₃: 304.1099; found: 304.1098.

9-(3-Nitrophenyl)-3a,4-dihydronaphtho[2,3-c]furan-1(3H)-one (2p)

Yellow solid; mp 203.0–204.3 °C.

IR (KBr): 1772, 1732, 1719 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 8.32–8.28 (m, 1 H), 8.18–8.10 (m, 1 H), 7.74–7.61 (m, 2 H), 7.36–7.31 (m, 2 H), 7.22–7.19 (m, 1 H), 6.86 (d, *J* = 8.0 Hz, 1 H), 4.77 (t, *J* = 8.5 Hz, 1 H), 4.09 (t, *J* = 9.0 Hz, 1 H), 3.52–3.48 (m, 1 H), 3.12, 3.00 (dd, *J* = 6.5, 6.5 Hz, 1 H), 2.93, 2.90 (dd, *J* = 16.0, 15.5 Hz, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 167.9, 148.0, 144.4, 135.9, 135.3, 134.8, 130.4, 129.1, 128.9, 128.5, 128.4, 127.6, 127.5, 123.9, 123.5, 71.4, 35.5, 32.7.

LRMS (EI, 70 eV): m/z (%) = 307 (M⁺, 88), 263 (25), 215 (29), 202 (100), 101 (21).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₃NO₄: 307.0845; found: 307.0848.

9-(Thiophen-2-yl)-3a,4-dihydronaphtho[2,3-c]furan-1(3H)-one (2q)

Yellow solid; mp 128.0–130.1 °C.

IR (KBr): 1748 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.49 (d, *J* = 5.0 Hz, 1 H), 7.33–7.30 (m, 1 H), 7.29–7.24 (m, 3 H), 7.24–7.22 (m, 1 H), 7.14 (d, *J* = 9.0 Hz, 1 H), 4.71 (t, *J* = 8.5 Hz, 1 H), 4.04 (t, *J* = 8.5 Hz, 1 H), 3.47 (m, 1 H), 3.03, 3.01 (dd, *J* = 7.5, 6.5 Hz, 1 H), 2.87, 2.84 (dd, *J* = 15.0, 15.5 Hz, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 167.8, 140.1, 135.9, 133.9, 130.5, 129.1, 127.9, 127.4, 127.3, 126.7, 124.1 71.0, 36.0, 32.8.

LRMS (EI, 70 eV): m/z (%) = 268 (M⁺, 84), 223 (100), 209 (50), 165 (23).

HRMS (EI): m/z [M]⁺ calcd for C₁₆H₁₂O₂S: 268.0558; found: 268.0554.

9-Phenyl-2-propyl-2,3,3a,4-tetrahydro-1*H*-benzo[*f*]isoindol-1one (2r)

Yellow oil.

IR (KBr): 1675 cm^{-1} .

¹H NMR (500 MHz, CDCl₃): δ = 7.42–7.37 (m, 3 H), 7.27–7.21 (m, 4 H), 7.14 (t, *J* = 7.5 Hz, 1 H), 6.92 (d, *J* = 8.0 Hz, 1 H), 3.74–3.68 (m, 1 H), 3.37–3.32 (m, 1 H), 3.23 (d, *J* = 8.5 Hz, 1 H), 3.15–3.11 (m, 2 H), 3.06–3.02 (m, 1 H), 3.04, 2.82–2.79 (m, 1 H), 1.60–1.55 (m, 2 H), 0.89 (t, *J* = 7.0 Hz, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 166.6, 140.3, 136.6, 135.6, 135.4, 130.2, 129.7, 128.3, 128.2, 127.7, 127.7, 127.6, 60.4, 50.9, 34.0, 32.4, 20.6, 11.4.

LRMS (EI, 70 eV): m/z (%) = 304 (72), 303 (M⁺, 100), 302 (27), 274 (74), 260 (47), 231 (57), 215 (30), 202 (54).

HRMS (EI): m/z [M]⁺ calcd for C₂₁H₂₁NO: 303.1623; found: 303.1622.

2-Benzyl-9-phenyl-2,3,3a,4-tetrahydro-1*H*-benzo[*f*]isoindol-1-one (2s)

Yellow solid; mp 135.8-138.0 °C.

IR (KBr): 1674 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.45–7.33 (m, 3 H), 7.32–7.28 (m, 4 H), 7.28–7.20 (m, 5 H), 7.18–7.12 (m, 1 H), 6.93 (d, *J* = 7.5 Hz, 1 H), 4.65 (d, *J* = 14.5 Hz, 1 H), 4.37 (d, *J* = 15.0 Hz, 1 H), 3.60 (t, *J* = 9.0 Hz, 1 H), 3.12–3.02 (m, 1 H), 3.01–2.96 (m, 2 H), 2.78, 2.75 (dd, *J* = 5.0, 16.0 Hz, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 166.5, 141.0, 136.5 (2 C), 135.6, 135.4, 130.2, 129.2, 128.6, 128.4, 128.3, 128.2, 127.7, 127.6, 127.5, 126.9, 56.3, 47.0, 33.9, 32.2.

LRMS (EI, 70 eV): *m*/*z* (%) = 351 (M⁺, 14), 351 (73), 350 (33), 349 (100), 258 (62), 245 (57), 215 (42), 202 (26), 91 (50).

HRMS (EI): m/z [M]⁺ calcd for C₂₅H₂₁NO: 351.1623; found: 351.1620.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

Acknowledgment

The authors thank the Scientific Research Fund of Hunan Provincial Education Department (No. 08A037), Hunan Normal University (No. 080605), and National Natural Science Foundation of China (No. 20872112) for financial support.

References

- (a) Norton, J. A. Chem. Rev. 1942, 31, 319. (b) Martin, J. G.; Hill, R. K. Chem. Rev. 1961, 61, 537. (c) Carlson, R. G. Annu. Rep. Med. Chem. 1974, 9, 270. (d) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1977, 16, 10. (e) Brieger, G.; Bennett, J. N. Chem. Rev. 1980, 80, 63. (f) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007. (g) Winkler, J. D. Chem. Rev. 1996, 96, 167. (h) Kumar, A. Chem. Rev. 2001, 101, 1. (i) Takao, K.-i.; Munakata, R.; Tadano, K.-i. Chem. Rev. 2005, 105, 4779. (j) Wessig, P.; Müller, G. Chem. Rev. 2008, 108, 2051.
- (2) (a) Klemm, L. H.; Gopinath, K. W. *Tetrahedron Lett.* 1963, 4, 1243. (b) Klemm, L. H.; Gopinath, K. W. *J. Heterocycl. Chem.* 1965, 2, 225. (c) Klemm, L. H.; Lee, D. H.; Gopinath, K. W.; Klopfenstein, C. E. *J. Org. Chem.* 1966, 31, 2376. (d) Klemm, L. H.; Olson, D. R.; White, D. V. *J. Org. Chem.* 1971, 36, 3740. (e) Klemm, L. H.; Santhanam, P. S. *J. Org. Chem.* 1968, 33, 1268. (f) Klemm, L. H.; Klemm, R. A.; Santhanam, P. S.; White, D. V. *J. Org. Chem.* 1971, 36, 2169. (g) Klemm, L. H.; Santhanam, P. S. *J. Heterocycl. Chem.* 1972, 9, 423. (h) Klemm, L. H.; McGuire, T. M.; Gopinath, K. W. *J. Org. Chem.* 1976, 41, 2571. (i) Klemm, L. H.; McGuire, T. M. J. *Heterocycl. Chem.* 1972, 9, 1215.
- (3) (a) Laird, T.; Ollis, W. D. J. Chem. Soc., Chem. Commun. 1972, 557. (b) Bartlett, A. J.; Laird, T.; Ollis, W. D. J. Chem. Soc., Chem. Commun. 1974, 496. (c) Oppolzer, W.; Achini, R.; Pfenninger, E.; Weber, H. P. Helv. Chim. Acta 1976, 59, 1186. (d) Laird, T.; Ollis, W. D.; Sutherland, I. O. J. Chem. Soc., Perkin Trans. 1 1980, 1477. (e) Chukhadzhyan, E. O.; Chukhadzhyan, El. O.; Shakhatuni, K. G.; Babayan, A. T. Chem. Heterocycl. Compd. (Engl. Transl.) 1991, 27, 594. (f) Chukhadzhyan, E. O.; Gevorkyan, A. R.; Chukhadzhyan, El. O.; Kinoyan, F. S. Russ. J. Org. Chem. (Engl. Transl.) 2005, 41, 358. (g) Chukhadzhyan, E. O.; Gevorkyan, A. R.; Chukhadzhyan, El. O.; Kinoyan, F. S. Zh. Org. Khim. 2005, 41, 369. (h) Herz, H.-G.; Schatz, J.; Maas, G. J. Org. Chem. 2001, 66, 3176.

- (4) For selected reviews on superbases: (a) Schwesinger, R.; Schlemper, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 1167.
 (b) Schwesinger, R.; Schlemper, H.; Hasenfratz, C.; Willaredt, J.; Dambacher, T.; Breuer, T.; Ottaway, C.; Fletschinger, M.; Boele, J.; Fritz, H.; Putzas, D.; Rotter, H. W.; Bordwell, F. G.; Satish, A. V.; Ji, G.-Z.; Peters, E.-M.; Peters, K.; von Schnering, H. G.; Walz, L. Liebigs Ann. Chem. 1996, 1055. (c) Schlosser, M. Pure Appl. Chem. 1988, 60, 1627. (d) Ishikawa, T. Superbases for Organic Synthesis: Guanidines, Amidines and Phosphazenes and Related Organocatalysts; John Wiley & Sons: Chichester, 2009.
- (5) For selected recent papers on P₄-t-Bu-catalyzed reactions, see: (a) Imahori, T.; Kondo, Y. J. Am. Chem. Soc. 2003, 125, 8082. (b) Imahori, T.; Hori, C.; Kondo, Y. Adv. Synth. Catal. 2004, 346, 1090. (c) Ebisawa, M.; Ueno, M.; Oshima, Y.;

Kondo, Y. *Tetrahedron Lett.* 2007, *48*, 8918.
(d) Kanazawa, C.; Ito, A.; Terada, M. *Synlett* 2009, 638.
(e) Kanazawa, C.; Goto, K.; Terada, M. *Chem. Commun.* 2009, 5248. (f) Naka, H.; Koseki, D.; Kondo, Y. *Adv. Synth. Catal.* 2008, *350*, 1901.

- (6) (a) Anastas, P. T.; Stevenson, R. J. Nat. Prod. 1991, 54, 1687. (b) Flanagan, S. R.; Harrowven, D. C.; Bradley, M. *Tetrahedron* 2002, 58, 5989. (c) Cow, C.; Leung, C.; Charlton, J. L. Can. J. Chem. 2000, 78, 553. (d) Gordaliza, M.; Garcia, P. A.; Miguel del Corral, J. M.; Castro, M. A.; Gomez-Zurita, M. A. *Toxicon* 2004, 44, 441. (e) Eghbali, N.; Eddy, J.; Anastas, P. T. J. Org. Chem. 2008, 73, 6932.
- (7) The X-ray crystallographic data for compound **2a** are summarized in Supporting Information.
- (8) Revesz, L.; Meigel, H. Helv. Chim. Acta 1988, 71, 1697.