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A novel protocol for the rapid synthesis of pyridone colorants under controlled microwave irradiation in
a dedicated reactor is described. Short reaction times, high isolated yields, and versatility for different
substrates are the advantages of the reported method.
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1. Introduction

Azo compounds are the largest group of colorants in terms of
number and production volume of currently marketed dyes and
pigments. The importance of azo compounds as colorants is due to
the simplicity of their synthesis by diazotization and azo coupling,
and to the almost innumerable possibilities presented by variation
on the diazo compounds and coupling components, in conjunction
with their generally high molar extinction coefficient and
moderate/high fastness properties [1]. An important group of
yellow disperse dyes are based on pyridone derivatives as coupling
components, which can easily be obtained from 3-oxobutanoates
and 2-cyanoacetamides. These dyes have largely replaced yellow
disperse dyes based on pyrazolones [1]. Pyridone disperse yellow
dyes, such as C.I. Disperse Yellows 114, 119 and 211, are commonly
used for dyeing polyester fabrics [2,3].

These and other azo dyes have traditionally been prepared from
pyridone as a coupling component and various diazonium salts
(Scheme 1a) [4e16]. Unreacted pyridone and low yields of the
corresponding products are the main disadvantages of this method
[4e16]. Alternatively, arylazo colorants containing pyridone rings
can also be prepared from b-diketones and various diazonium salts,
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followed by condensation with cyanoacetamide (Scheme 1b, R1,
R2 ¼ Me) [17,18]. The arylazo dyes obtained in such manner do not
contain unreacted pyridone material and are generally obtained in
higher yields. Long reaction times, the use of a toxic and strong base
for the condensation step, are the other disadvantages of this
method.

This paper concerns an improved method for synthesising
novel, 5-arylazo-4,6-disubstituted-3-cyano-2-pyridone dyes from
b-diketones and various diazonium salts, followed by high speed
microwave-assisted condensation with cyanoacetamide.
2. Experimental

2.1. General

All starting materials were obtained from Aldrich and Fluka, and
were used without further purification. 1,3-Dicarbonyl compounds
2 and 4 were prepared following reported methods [17e19].
Melting points were taken on Stuart SMP3melting point apparatus.
The 1H and 13C NMR spectra were recorded on a Bruker 300 MHz
instrument. A Biotage Initiator 2.5 EXP was used for the microwave
experiments. Analytical HPLC analysis (Shimadzu LC 20) was
carried out on a C 18 reversed-phase analytical column
(150 � 4.6 mm, particle size 5 �ım) using mobile phases A (water/
acetonitrile 90:10 (v/v) þ 0.1% TFA) and B (acetonitrile þ 0.1% TFA)
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Scheme 1. Synthetic methods for the preparation of arylazopyridones.

Table 1
Optimization of different parameters in the reaction of phenylazo acetylacetone (2a)
and cyanoacetamide (3).

Entrya KOH (equiv.) Amide (equiv.) T (�C) Time (min) Conversion (%)b

1 1.7 1 80 15 13
2 1.7 1 90 15 34
3 1.7 1 100 15 42
4 1.7 1 110 15 50
5 1.7 1 120 15 47
6 1.7 1 130 15 59
7 1.7 1 140 15 46
8 1.7 1 200 15 51
9 1.7 1 130 15 65
10 1.7 1.3 130 15 70
11 1.7 1.5 130 15 79
12 1.7 1.7 130 15 96
13 1.7 2 130 15 99
14 1.7 2 130 3 92
15 1.7 2 130 5 99
16 1.7 2 130 10 99
17 1.7 2 130 15 99
18 1 2 130 5 76
19 1.5 2 130 5 95
20 1.7 2 130 5 >99

a Reaction conditions: A mixture of the phenylazo acetylacetone (2a) (1 mmol),
cyanoacetamide (3) and potassium hydroxide in absolute ethanol (2 mL) was irra-
diated for the appropriate time.

b Conversion of phenylazo acetylacetone (2a) measured by HPLC-UV at 369 nm.
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at a flow rate of 0.5 mL/min. The following gradient was applied:
linear increase from solution 30% B to 100% B in 9 min, hold at 100%
solution B for 5 min. Low-resolutionmass spectrawere obtained on
an Agilent 1100 LC/MS instrument using atmospheric pressure
chemical ionization (APCI) in positive or negative mode. The
UVevis absorption spectra were taken in the region between 200
and 600 nm using a Shimadzu 1700 UVevis spectrophotometer in
1.00 cm cells at 25� 0.1 �C in ethanol at concentration 5�10�5 mol
dm�3.

2.2. Synthesis of pyridone colorants

A mixture of the dicarbonyl compound 2 or 4 (1 mmol), cya-
noacetamide (2 mmol, 168 mg) and potassium hydroxide
(1.7 mmol, 95 mg) in absolute ethanol (2 mL) was irradiated for
5 min (Table 1). The resulting solid product was collected by
filtration and washed with 2 � 5 mL of water and 5 mL of ethanol.
All products were identified either by comparison with authentic
samples or in the case of novel structures by 1H/13C NMR spec-
troscopy in addition to MS analysis.

2.2.1. 4,6-Dimethyl-2-oxo-5-(phenyldiazenyl)-1,2-dihydropyridine-
3-carbonitrile (1a)

Orange powder, Mp >300 �C (Lit. Mp 278e279 �C [7]). 1H NMR
(300 MHz, DMSO-d6) d (ppm) ¼ 7.65 (d, J ¼ 8.3 Hz, 2 H, Ar-H), 7.46
(t, J ¼ 9 Hz, 2 H, Ar-H), 7.33 (t, J ¼ 8 Hz, 1 H, Ar-H), 2.53 (s, 3 H, CH3),
2.51 (s, 3 H, CH3). 13C NMR (75 MHz, DMSO-d6) d (ppm) ¼ 170.6,
162.1, 154.0, 148.4, 132.3, 129.4, 128.6, 121.6, 120.2, 96.2, 25.3, 19.7.
UVevis (ethanol): lmax/nm: [(log 3)]: 349 (3.96). MS (pos. APCI)
m/z: 253.4 [MþHþ], MS (neg. APCI)m/z: 251.4 [M - Hþ], (M¼ 252.3).

2.2.2. 5-((2,6-Dimethylphenyl)diazenyl)-4,6-dimethyl-2-oxo-1,2-
dihydropyridine-3-carbonitrile (1b)

Orange powder, Mp >300 �C. 1H NMR (300 MHz, DMSO-d6)
d (ppm)¼ 7.11 (brs, 3 H, Ar-H), 2.55 (s, 3 H, CH3), 2.27 (s, 6 H, 2 CH3).
13C NMR (75 MHz, DMSO-d6) d (ppm) ¼ 161.7, 152.7, 147.9, 133.0,
129.7, 129.2, 126.7, 126.4, 120.3, 95.9, 25.4, 19.9, 19.7. UVevis
(ethanol): lmax/nm: [(log 3)]: 459 (2.85), 351 (4.12). MS (pos. APCI)
m/z: 281.4 [M þ Hþ], (M ¼ 280.3).

2.2.3. 5-((2-Iodophenyl)diazenyl)-4,6-dimethyl-2-oxo-1,2-
dihydropyridine-3-carbonitrile (1c)

Orange powder, Mp >300 �C. 1H NMR (300 MHz, DMSO-d6)
d (ppm) ¼ 8.06 (d, J ¼ 8.6 Hz, 1H, Ar-H), 7.15e7.20 (m, 1 H, Ar-H),
7.45e7.51 (m, 2 H, Ar-H), 2.71 (s, 3 H, CH3), 2.65 (s, 3 H, CH3). 13C
NMR (75MHz, DMSO-d6) d (ppm)¼ 163.9, 157.2, 153.2, 152.9, 140.0,
131.6, 129.5, 117.5, 117.3, 101.8, 100.2, 21.9, 21.2. UVevis (ethanol):
lmax/nm: [(log 3)]: 384 (4.24). MS (pos. APCI) m/z: 379.0 [M þ Hþ],
(M ¼ 378.0).

2.2.4. 5-((4-Bromophenyl)diazenyl)-4,6-dimethyl-2-oxo-1,2-
dihydropyridine-3-carbonitrile (1d)

Orange powder, Mp >300 �C (Lit. Mp >300 �C [16]). 1H NMR
(300 MHz, DMSO-d6) d (ppm)¼ 7.64 (d, J¼ 9 Hz, 2 H, Ar-H), 7.58 (d,
J ¼ 9 Hz, 2 H, Ar-H), 2.55 (s, 3 H, CH3), 2.52 (s, 3 H, CH3). 13C NMR
(75 MHz, DMSO-d6) d (ppm) ¼ 170.4, 162.4, 153.0, 149.0, 132.4,
132.3, 123.4, 121.3, 119.9, 96.7, 25.1, 19.8. UVevis (ethanol): lmax/
nm: [(log 3)]: 366 (4.26). MS (pos. APCI) m/z: 333.0 [M þ Hþ], MS
(neg. APCI) m/z: 330.3 [M - Hþ], (M ¼ 331.2).

2.2.5. 5-((4-Bromo-2,6-dimethylphenyl)diazenyl)-4,6-dimethyl-2-
oxo-1,2-dihydropyridine-3-carbonitrile (1e)

Orange powder, Mp >300 �C. 1H NMR (300 MHz, DMSO-d6)
d (ppm) ¼ 7.30 (s, 2 H, Ar-H), 2.24 (s, 6H, 2 CH3), 2.45 (s, 3H, CH3),



Scheme 2.
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2.40 (s, 3H, CH3). 13C NMR (75 MHz, DMSO-d6) d (ppm) ¼ 170.3,
162.1, 151.7, 148.2, 132.9, 132.5, 131.5, 120.2, 118.5, 96.2, 25.5, 19.9,
19.4. UVevis (ethanol): lmax/nm: [(log 3)]: 458 (3.19), 355 (4.22).
MS (neg. APCI) m/z: 358.1 [M - Hþ], (M ¼ 359.2).

2.2.6. 4,6-Dimethyl-5-((2-nitrophenyl)diazenyl)-2-oxo-1,2-
dihydropyridine-3-carbonitrile (1f)

Orange powder, Mp >300 �C. 1H NMR (300 MHz, DMSO-d6)
d (ppm) ¼ 7.87 (d, J ¼ 13.8 Hz, 1 H, Ar-H), 7.67e7.69 (m, 2 H, Ar-H),
7.43e7.49 (m, 1 H, Ar-H), 2.48 (s, 3 H, CH3), 2.44 (s, 3 H, CH3). 13C
NMR (75 MHz, DMSO-d6) d (ppm) ¼ 170.5, 164.1, 149.8, 147.2, 146.1,
133.0, 128.1, 123.7, 119.5, 118.4, 97.4, 25.4, 19.8. UVevis (ethanol):
lmax/nm: [(log 3)]: 385 (4.19). MS (pos. APCI) m/z: 298.1 [M þ Hþ],
MS (neg. APCI) m/z: 296.1 [M - Hþ], (M ¼ 297.2).

2.2.7. 5-((2,6-Dimethylphenyl)diazenyl)-2-oxo-4,6-diphenyl-1,2-
dihydropyridine-3-carbonitrile (1g)

Red solid, Mp 161e162 �C. 1H NMR (300 MHz, DMSO-d6)
d (ppm) ¼ 7.42e7.45 (m, 1 H, Ar-H), 7.26e7.36 (m, 8 H, Ar-H),
6.80e6.82 (m, 2 H, Ar-H), 2.48 (s, 3 H, CH3), 1.62 (s, 6 H, 2 CH3). 13C
NMR (75MHz, DMSO-d6) d (ppm)¼ 170.0, 161.8, 150.4, 149.9, 142.0,
139.1, 132.6, 131.0, 129.8, 129.1, 128.7, 128.2, 127.6, 127.5, 127.4, 127.2,
119.8, 96.4,19.1. UVevis (ethanol): lmax/nm: [(log 3)]: 367 (4.13). MS
(pos. APCI)m/z: 405.2 [MþHþ], MS (neg. APCI)m/z: 403.2 [M - Hþ],
(M ¼ 404.4).

2.2.8. 2-Oxo-4,6-diphenyl-5-(phenyldiazenyl)-1,2-dihydropyridine-
3-carbonitrile (1h)

Yellow powder, Mp 190e192 �C (dec). 1H NMR (300 MHz,
DMSO-d6) d (ppm) ¼ 7.47e7.50 (m, 2 H, Ar-H), 7.33e7.35 (m, 6 H,
Ar-H), 7.18e7.26 (m, 5 H, Ar-H), 6.89e6.92 (m, 2 H, Ar-H). 13C NMR
(75MHz, DMSO-d6) d (ppm)¼ 170.2, 161.8, 152.7, 149.0, 141.3, 138.8,
131.5, 130.5, 129.2, 129.1, 128.9, 128.0, 127.4, 121.4, 119.9, 96.7.
UVevis (ethanol): lmax/nm: [(log 3)]: 370 (4.01). MS (pos. APCI) m/
z: 377.5 [M þ Hþ], MS (neg. APCI) m/z: 375.6 [M - Hþ], (M ¼ 376.4).

2.2.9. 5-((4-Bromo-2,6-dimethylphenyl)diazenyl)-2-oxo-4,6-
diphenyl-1,2-dihydropyridine-3-carbonitrile (1i)

Dark red solid, Mp 179e180 �C. 1H NMR (300 MHz, DMSO-d6)
d (ppm)¼ 7.41e7.44 (m, 2 H, Ar-H), 7.26e7.34 (m, 8 H, Ar-H), 7.03 (s,
2 H, Ar-H), 1.58 (s, 6 H, 2 CH3). 13C NMR (75 MHz, DMSO-d6)
d (ppm) ¼ 169.9, 162.2, 150.0, 149.3, 141.9, 139.0, 133.7, 132.5, 131.4,
129.8, 128.7, 128.3, 127.6, 127.6, 127.4, 119.7, 119.6, 96.7, 18.8. UVevis
(ethanol): lmax/nm: [(log 3)]: 374 (4.08). MS (neg. APCI) m/z: 482.2
[M - Hþ], (M ¼ 483.4).

2.2.10. 6-Hydroxy-4-methyl-2-oxo-5-(phenyldiazenyl)-1,2-
dihydropyridine-3-carbonitrile (5a)

Orange powder, Mp >300 �C (Lit. Mp 288e289 �C [8]). 1H NMR
(300 MHz, DMSO-d6) d (ppm) ¼ 13.74 (s, 1H, NH)/10.17* (s, 1H, NH),
7.54 (d, J¼ 7.2 Hz, 2H, Ar-H), 7.40 (t, J¼ 7.5 Hz, 2 H, Ar-H), 7.17*-7.32*
(m, 5 H, Ar-H), 6.91 (t, J ¼ 7.2 Hz, 1 H, Ar-H), 2.51* (s, 3 H, CH3)/2.32
(s, 3 H, CH3) (tautomeric ratio, %: 5a/5a* ¼ 50:50). UVevis
(ethanol): lmax/nm: [(log 3)]: 430 (4.19), 353 (4.19). MS (neg. APCI)
m/z: 253.2 [M - Hþ], (M ¼ 254.2).

2.2.11. 5-((2,6-Dimethylphenyl)diazenyl)-6-hydroxy-4-methyl-2-
oxo-1,2-dihydropyridine-3-carbonitrile (5b)

Orange powder, Mp >300 �C. 1H NMR (300 MHz, DMSO-d6)
d (ppm) ¼ 14.23 (s, 1 H, NH), 7.02 (d, J ¼ 7.5 Hz, 2 H, Ar-H), 6.85 (t,
J ¼ 7.5 Hz, 1H, Ar-H), 2.34 (s, 6 H, 2 CH3), 2.23 (s, 3 H, CH3). 13C
NMR (75 MHz, DMSO-d6) d (ppm) ¼ 197.2, 165.4, 156.1, 140.2,
138.1, 129.6, 129.1, 128.8, 127.3, 123.0, 27.3, 20.0. UVevis (ethanol):
lmax/nm: [(log 3)]: 412 (4.06). MS (neg. APCI) m/z: 281 [M - Hþ],
(M ¼ 282.3).
2.2.12. 5-((4-Bromo-2,6-dimethylphenyl)diazenyl)-6-hydroxy-4-
methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (5c)

Orange powder, Mp >300 �C. 1H NMR (300 MHz, DMSO-d6)
d (ppm) ¼ 13.96 (s, 1H, NH), 7.21 (s, 2 H, Ar-H), 2.33 (s, 6 H, 2 CH3),
2.22 (s, 3 H, CH3). 13C NMR (75 MHz, DMSO-d6) d (ppm) ¼ 196.9,
164.7, 163.5, 139.9, 132.0, 131.7, 131.1, 129.4, 126.6, 113.9, 27.4, 19.7.
UVevis (ethanol): lmax/nm: [(log 3)]: 432 (3.62), 350 (4.08). MS
(neg. APCI) m/z: 360.1 [M - Hþ], (M ¼ 361.1).

2.2.13. 5-((4-Bromophenyl)diazenyl)-6-hydroxy-4-methyl-2-oxo-
1,2-dihydropyridine-3-carbonitrile (5d)

Orange powder, Mp >300 �C. 1H NMR (300 MHz, DMSO-d6)
d (ppm)¼ 13.74 (s, 1H, NH)/10.26* (s, 1H, NH), 7.57* (d, J¼ 9 Hz, 2 H,
Ar-H), 7.46* (d, J ¼ 9 Hz, 2 H, Ar-H), 7.44 (d, J ¼ 9 Hz, 2 H, Ar-H), 7.16
(d, J ¼ 9 Hz, 2 H, Ar-H), 2.51* (s, 3 H, CH3)/2.13 (s, 3 H, CH3),
(tautomeric ratio, %: 5d/5d* ¼ 62:38). UVevis (ethanol): lmax/nm:
[(log 3)]: 348 (3.69). MS (neg. APCI)m/z: 329.1 [M - Hþ], (M¼ 333.1).

2.2.14. 6-Hydroxy-2-oxo-4-phenyl-5-(phenyldiazenyl)-1,2-
dihydropyridine-3-carbonitrile (5e)

Orange powder, Mp >300 �C. 1H NMR (300 MHz, DMSO-d6)
d (ppm) ¼ 13.96 (s, 1H, NH), 7.82 (d, J ¼ 6.9 Hz, 2 H, Ar-H), 7.57 (t,
J¼ 7.5 Hz,1 H, Ar-H), 7.47 (t, J¼ 7.5 Hz, 2 H, Ar-H), 7.19e7.24 (m, 2 H,
Ar-H), 6.99 (d, J¼ 7.5 Hz, 2 H, Ar-H), 6.81 (t, J¼ 7.5 Hz,1 H, Ar-H). 13C
NMR (75MHz, DMSO-d6) d (ppm)¼ 193.4,165.6,144.3,140.6,138.6,
132.5, 129.7, 128.4, 120.7, 113.3. UVevis (ethanol): lmax/nm: [(log
3)]: 360 (4.24). MS (pos. APCI) m/z: 318.9 [M þ Hþ], MS (neg. APCI)
m/z: 315.1 [M - Hþ], (M ¼ 316.3).

3. Results and discussion

As a starting point for our investigation, we examined the
synthesis of 5-phenylazo-4,6-dimethyl-3-cyano-2-pyridone (1a)
from phenylazo acetylacetone (2a) and cyanoacetamide (3), using
KOH as the base for the reaction (Scheme 2, Table 1) in ethanol as
the solvent. The use of KOH instead of the previously employed
sodium ethoxide [17,18] was found to be more convenient. All
studies were performed applying controlled single-mode micro-
wave heating in sealed vessels [20,21]. Screening of reaction
conditions focused on different amounts of the KOH, amide, and
variations in reaction time and temperature. As can be seen in
Table 1 among different temperatures a better result was obtained
at 130 �C (entries 1e8). The effect of the molar excess of amide 3
was checked and it was found that in the presence of 2 equivalents
of the amide an optimum result was obtained (Table 1, entries
9e13). Running the reaction for different periods of times (Table 1,
entries 13e16), revealed that complete conversions were generally



Table 2
Synthesis of pyridone colorants 1a-i (Scheme 2).

Entry R1 R2 R3 R4 Product Yield (%)a

1 Me H H H

1a

99

2 Me Me Me H

1b

100

3 Me I H H

1c

100

4 Me H H Br

1d

92

5 Me Me Me Br

1e

100

6 Me NO2 H H

1f

100

7 Ph Me Me H

1g

83

8 Ph H H H

1h

72

9 Ph Me Me Br

1i

72

a Isolated yield.
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obtained after 5 min. Along the same lines it was established that
the highest conversionswere achieved employing 1.7 equivalents of
KOH base (Table 1, entries 17e20). Evaluation of isolated yields for
the reaction under the optimum conditions represented in Table 1,
entry 20 afforded 99% of the corresponding pyridone product 1a.

Having optimized conditions in hand that allow the preparation
of pyridone 1a within 5 min in high isolated yield (Table 1, entry
20), the synthesis of a variety of different 5-arylazo-4,6-disubsti-
tuted-3-cyano-2-pyridone dyes 1b-i from the condensation of
diketones 2 and cyanoacetamide (3) was investigated (Scheme 2).
The results are summarized in Table 2. As can be seen, products
with methyl substituents at position 4 and 6 on the pyridone ring
were obtained in almost quantitative yield. An important feature of
this work is the preparation of 4,6-disubstituted derivatives in high
yields in a short period of time (Table 2, entries 7e9) which is not
Table 3
Synthesis of pyridone colorants.

Entry R1 R2/R6 R3 R4

1 Me OEt/OH H H

2 Me OEt/OH Me Me

3 Me OEt/OH Me Me

4 Me OEt/OH H H

5 Ph OEt/OH H H

a Isolated yield.
possible under conventional heating. For example, pyridone 1gwas
obtained in only 50% isolated yield after 6 h reflux in ethanol. It
worth noting that this is the first report of a high yielding prepa-
ration of 4,6-diphenylsubstituted pyridone dyes. The improvement
in product yield and reaction time clearly shows the advantage of
running reactions at higher temperature as compared to the
conventional oil bath experiment at the boiling point of the solvent
[20,21].

In addition to the results obtained with 1,3-diketone substrates
2 we also evaluated b-ketoesters 4 under the optimized condition
(Scheme 3). The results are summarized in Table 3. The lower yields
in these cases can be related to the lower reactivity of b-ketoesters
4 compared to diketones 2. The UVevis absorption maxima (lmax)
of the electronic transitions involving the free non-bonding elec-
trons of the azo group of the synthesized pyridone dyes and the
R5 Product Yield (%)a

H

5a

47

H

5b

50

Br

5c

80

Br

5d

93

H

5e

78



Scheme 4. The equilibrium between azo form (I) and hydrazone form (II) of 5-(4-
substituted arylazo)-6-hydroxy-4-methyl-3-cyano-2-pyridones [15].
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molecular extinction coefficients (given as log 3) in ethanol are
given in Experimental section. The spectra were run in spec-
troquality ethanol using concentrations of 5 � 10e5 mol dm�3. The
obtained data confirm that the positions of the UVevis absorption
maxima depend on the nature of the substituents of the diazo
component as well as on the nature of the substituents of the
pyridone component. Introduction of a substituent into the diazo
component predominantly leads to a bathochromic shift of the
long-wavelength absorption maximum as compared to that of
the unsubstituted dyes [15,16,18]. Change of the substituents in the
pyridone component leads also mainly to bathochromic shifts as
compared to that of the 4,6-dimethyl substituted pyridone dyes. It
should be mentioned that the arylazo pyridone dyes prepared in
this work may exist in two tautomeric forms and that the
tautomerism is influenced mainly by the nature of the substituents
and the polarity of the solvents [16]. This tautomerisation was
observed in the 1H NMR spectra of some of the prepared derivatives
5a and 5d (Scheme 4) (see Experimental Section).
4. Conclusion

In conclusion a rapid and efficient method for the synthesis of
an important group of azo-based dyes was introduced. Compared
to the traditional method applying conventional heating, the use of
controlled sealed vessel microwave heating allowed the prepara-
tion of a variety of pyridone colorants in very short reaction times
and high yields.
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