

Carbohydrate Research 263 (1994) C1-C6

Preliminary communication Total synthesis of sulfated Le^x pentaosyl ceramide

Shigeki Numomura ^{a,*}, Masami Iida ^a, Masaaki Numata ^a, Mamoru Sugimoto ^a, Tomoya Ogawa ^{b,c}

^a Tokyo Research Institute, Nissin Food Products Corporation, 1780 Kitano, Tokorozawa-shi, Saitama 359, Japan

^b The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan ^c Faculty of Agriculture, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan

Received 5 July 1994; accepted 27 July 1994

Keywords: Lex; Sulfated Lex; Lex pentaosyl ccramide; Cell adhesion; Selectin

The selectins are a family of adhesion molecules that mediate the binding of leucocytes to endothelial cells and platelets, as well as to lymphocyte-homing receptors. The ligands recognized by L-selectin have been identified as the tetrasaccharides SLe^x and SLe^a [1]. Owing to the biological importance of these ligands in cell-adhesion processes, their efficient chemical synthesis is in demand [2].

Recently Feizi and co-workers reported the isolation of equimolar mixtures of sulfated Le^x and Le^a tetrasaccharides derived from an ovarian cystoadenoma glycoprotein that were more strongly bound to L-selectin than SLe^x or SLe^a [3]. More recently, chemical syntheses of both sulfated Le^x and Le^a were reported from two independent laboratories [4].

As part of our project on the synthesis of glycosphingolipids, we describe herein a stereocontrolled, facile, first total synthesis of sulfated Le^x pentaosyl ceramides 1 and 2 for further chemical and biological scrutiny. The overall strategy is depicted in Scheme 1.

Retrosynthetic analysis of a suitable process to 1 and 2 (Scheme 1) led us to design the putative glycopentaosyl donor 3 that could be coupled with ceramide derivative 4 [5]. Donor 3 was expected to be constructed from synthons derived from D-galactose, 2-amino-2-deoxy-D-glucose, L-fucose, and lactose (compounds 5, 6 [6], 7 [7], and 8 [8], respectively, all of which are prepared from readily available compounds).

Glycosylation of 5 (1.2 equiv) with 6 in toluene in the presence of MeOTf at -15° C afforded a 61% yield of the desired β -(1 \rightarrow 4)-linked compound 9 {[α]_D -4.8° (c 0.5);

^{*} Corresponding author.

 $R_f 0.56$ (2:1 toluene-EtOAc)}, as well as a 17% yield of its regioisomer 10 {[α]_D - 16.9° (c 1.0); $R_f 0.42$ (2:1 toluene-EtOAc)}¹.

The β configurations of 9 and 10 were assignable from the ¹H NMR data that showed a signal for H-1d at δ 4.496 (d, J 8.1 Hz) and 4.419 (d, J 8.1 Hz), respectively. The regiochemistry of the newly introduced glycosidic linkages of 9 and 10 were deduced by converting both compounds into their respective acetates 11 {[α]_D - 1.0° (c 1.2); R_f 0.29 (3:1 toluene–EtOAc)} and 12 {[α]_D - 11.3° (c 1.2); R_f 0.27 (3:1 toluene–EtOAc)}, which showed in their ¹H NMR spectra deshielded signals for H-3c at $\delta_{\rm H}$ 5.691 (dd, J 8.4, 10.6 Hz) and H-4c at $\delta_{\rm H}$ 4.987 (t, J 9.9 Hz), respectively.

The crucial α -stereoselective glycosylation of **9** with methyl thioglycoside **7** (2.0 equiv) [7] in 5:1 Et₂O–(ClCH₂)₂ afforded a 77% yield of trisaccharide **13** {[α]_D – 11.1° (c 0.4); R_f 0.35 (3:1 toluene–EtOAc)}.

The successful introduction of the L-fucosyl unit was confirmed by the ¹H NMR data for 13 that showed a signal for H-1e at $\delta_{\rm H}$ 4.831 (d, J 3.3 Hz). Deallylation of 13 with (1) [Ir(COD)(PMePh_2)_2]PF_6 [9] in THF and (2) I_2 in aq THF gave hemiacetal 14 in 81%

¹ It should be noted that all new compounds described herein gave satisfactory elemental analyses. Optical rotations were determined for solutions in CHCl₃ at 22°C. NMR spectra were recorded with a JNM-GX 500 Fourier-transform instrument. The values of δ_{H} are expressed in ppm downfield from the signal for internal Me₄Si for solutions in CDCl₃ at 25°C, unless noted otherwise. Mass spectra were determined using electrospray-ionization (ESIMS) techniques.

yield. Compound 14 was transformed into β -trichloroacetimidate 16 {[α]_D + 6.2° (c 1.0); $R_f 0.60$ (1:1 toluene–EtOAc); $\delta_H 6.365$ (d, J 8.8 Hz, H-1c)} in 78% yield in the presence of CCl₃CN and 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU) [10]. On the other hand, 14 was converted to an α,β -mixture ($\alpha:\beta$ 1:3) of the glycosyl fluoride 15 [$R_f 0.60$ (1:1 toluene– EtOAc); $\delta_H 5.822$ (dd, 0.75 H, J 7.7, 54.6 Hz, H-1c β), 5.544 (dd, 0.25 H, J 2.7, 54.6 Hz, H-1c α)] in 98% yield with diethylaminosulfur trifluoride (DAST) [11] at -15° C.

Having prepared the trisaccharide donors 15 and 16 so designed, and having the glycosyl acceptor 8 in hand, the crucial glycosylation reaction was examined in the following manner.

Trimethylsilyl triflate-promoted glycosylation [12] between **16** and **8** (2 equiv) in CH₃CN at -38° C afforded the desired pentasaccharide **17** in 42% yield {[α]_D -26° (*c* 0.9); *R_f* 0.33 (4:1 toluene–EtOAc)}, along with glycal **18** [*R_f* 0.28 (2:1 hexane–EtOAc); $\delta_{\rm H}$ 6.672 (s, H-1c)] in 54% yield. The glycosylation reaction between **15** (1.3 equiv) and **8**, when carried out under Suzuki conditions [13] [Cp₂HfCl₂–AgOTf in (ClCH₂)₂ at -40° C], improved the coupling yield to 58%. The configuration of the newly introduced anomeric carbon C-1c was expected to be β , due to the presence of the N-2 phthaloyl group in the glycosyl donor, which favors the formation of 1,2-trans stereochemistry. Indeed, the ¹H NMR spectral data showed the anomeric proton of H-1c as a broad doublet at $\delta_{\rm H}$ 5.335 (*J* 8.4 Hz), thus confirming the β configuration.

Simultaneous cleavage of the phthaloyl and acetate groups of 17 was achieved by treatment with hydrazine hydrate in refluxing EtOH [14], and the amino alcohol thus obtained was acetylated to afford 19 in 83% yield [$R_f 0.52$ (1:1 toluene-EtOAc); $\delta_H 1.958$, 1.957, 1.815, 1.415 (4 s, 4 OAc)]. O-Deacetylation of 19 in MeONa-MeOH gave triol 20 in almost quantitative yield { $[\alpha]_D - 38^\circ$ (c 1.6); $R_f 0.29$ (1:3 toluene-EtOAc)}. Treatment of 20 with levulinic anhydride afforded the O-2d,O-3d-dilevulinoylated 21 in 77% yield { $[\alpha]_D - 56^\circ (c \ 0.87); R_f \ 0.43 \ (3:5 \ toluene-EtOAc)$ }. The assignment of **21** was deduced by converting 21 into acetate 22, which showed in the homonuclear Hartmann-Hahn (HOHAHA) NMR spectrum a newly deshielded signal for H-4d at $\delta_{\rm H}$ 5.350 (d, J 3.7 Hz), as well as signals for the already levulinoylated H-2d [$\delta_{\rm H}$ 4.956 (dd, J 8.0, 10.6 Hz)] and H-3d [$\delta_{\rm H}$ 4.822 (dd, J 3.7, 10.6 Hz)]. Conversion of 22 into the completely acylated glycopentaose 23 was carried out in two steps in 95% overall yield as follows: (1) H_2 with 20% Pd(OH)₂ in 4:1 MeOH-H₂O and (2) Ac₂O and 4-(dimethylamino) pyridine (DMAP) in pyridine. Compound 23 was obtained as a 2:1 mixture of β : α anomers at C-1a [$R_f 0.33$] $(30:1 \text{ CHCl}_3-\text{MeOH}); \delta_{\text{H}} 6.290 (d, J 3.7 \text{ Hz}, \text{H}-1a\alpha) \text{ and } \delta_{\text{H}} 5.699 (d, J 8.1 \text{ Hz}, \text{H}-1a\beta)].$ Chemoselective cleavage of the anomeric acetate of 23 with piperidinium acetate [15] in THF at 40°C afforded a 74% yield of hemiacetal 24, along with recovered starting material 23 (18%). Compound 24 was treated with CCl₃CN and DBU in (ClCH₂)₂ to give α trichloroacetimidate 25 in 93% yield {[α]_D = 0.8° (c 0.37); R_f 0.40 (25:1 CHCl₃–MeOH); $\delta_{\rm H}$ 6.506 (d, J 3.7 Hz, H-1a)}. The crucial coupling between 25 and 4 was performed in freshly distilled CHCl₃ in the presence of BF₃·OEt₂ to afford a 61% yield of β -glycoside **26** { $[\alpha]_{\rm D}$ - 19.5° (c 1.1); $R_f 0.48$ (26:1 CHCl₃-MeOH)}. The newly formed glycosidic linkage was shown to be β as revealed in the HOHAHA NMR spectrum of 26 [$\delta_{\rm H}$ 4.411 (d, J 7.7 Hz, H-1a)].

Further conversion of **26** to the target glycolipid was executed as follows. Removal of the levulinoyl groups of **26** by hydrazinium acetate in EtOH [16] at room temperature gave diol **27** in 75% yield { $[\alpha]_D - 22^\circ (c \ 1.0); R_f \ 0.37 (25:1 \ CHCl_3-MeOH)$ }. It is noteworthy that delevulinoylation of **26** at -12 to -3° C gave a mixture: **27** in 20% yield, **28** in 21% yield { $[\alpha]_D - 8.2^\circ (c \ 0.2); R_f \ 0.45 (7:5 \ toluene-acetone)$ }, and **29** in 10% yield { $[\alpha]_D - 15^\circ (c \ 0.46); R_f \ 0.42 (7:5 \ toluene-acetone)$ }. Diol **27** was converted to the disulfated compound **30** { $[\alpha]_D - 2^\circ (c \ 0.25); R_f \ 0.30 \ (4:1 \ CHCl_3-MeOH)$ in 73% yield by agency of the SO₃ · NMe₃ complex in Me₂NCHO at 90°C. The structure of **30** was confirmed by a COSY and a HOHAHA NMR experiment in CD₃OD, which showed that a sulfate group had indeed been introduced as revealed by the downfield shifts of the H-3d [$\delta_H \ 4.460 \ (dd, J \ 3.3, 10.6 \ Hz)$] and H-2d [$\delta_H \ 4.880 \ (dd, J \ 8.1, 10.6 \ Hz)$] signals.

Compound 28 was converted to the monosulfated 31 in the same manner in 77% yield $\{[\alpha]_D - 22^\circ (c \ 0.1); R_f \ 0.46 \ (16:3 \ CHCl_3-MeOH)\}$. The structure of 31 was supported by a HOHAHA NMR experiment in CD₃OD that showed a downfield shift of the H-3d $[\delta_H 4.565 \ (dd, J \ 3.3, 10.6 \ Hz)]$, indicating sulfation at that position.

Deprotection of 30 and 31 with 1 N NaOH in 1:1 MeOH-THF afforded 1 and 2 in 82 and 97% yields, respectively, after gel filtration through Sephadex LH-20 using 12:6:1 CHCl₃-MeOH-H₂O.

Physicochemical data for 1: $R_f 0.48$ (2:1:1 BuOH–EtOH–H₂O); ¹H NMR (49:1 Me₂SOd₆–D₂O, 60°C): $\delta_{\rm H}$ 5.560 (dt, J 15.4, 7.0 Hz, H-5Cer), 5.373 (dd, J 15.4, 7.0 Hz, H-4Cer), 4.972 (d, J 7.6 Hz, H-1c), 4.922 (d, J 2.9 Hz, H-1e), 4.432 (d, J 7.7 Hz, H-1d), 4.316 (d, J 3.0 Hz, H-4d), 4.285 (d J 8.1 Hz, H-1b), 4.277 (t, J 9.5 Hz, H-2d), 4.232 (q, J 6.6 Hz, H-5e), 4.174 (d, J 7.7 Hz, H-1a), 4.032 (dd, J 3.0, 9.5 Hz, H-3d), 1.837 (s, NAc), 1.092 (d, J 6.6 Hz, H-6e), 0.860 (t, J 7.0 Hz, 2 CH₂Me); ESIMS: m/z (M+Na)⁺ 1713.

Physicochemical data for 2: $R_f 0.55$ (2:1:1 BuOH–EtOH–H₂O); ¹H NMR (49:1 Me₂SOd₆–D₂O, 60°C): $\delta_{\rm H}$ 5.556 (dt, J 15.4, 7.0 Hz, H-5Cer), 5.376 (dd, J 15.4, 7.0 Hz, H-4Cer), 4.881 (d, J 7.6 Hz, H-1e), 4.725 (d, J 7.7 Hz, H-1c), 4.396 (d, J 7.7 Hz, H-1d), 4.280 (d, J 7.7 Hz, H-1b), 4.173 (d J 7.7 Hz, H-1a), 3.968 (dd, J 3.0, 9.5 Hz, H-3d), 3.952 (d, J 3.0 Hz, H-4d), 1.833 (s, NAc), 1.017 (d, J 6.6 Hz, H-6e), 0.858 (t, J 7.0 Hz, 2 CH₂Me); ESIMS: m/z (M + Na)⁺ 1610.

The biological properties of 1 and 2 are currently being studied. In summary, a stereocontrolled synthesis of the sulfated Le^x pentaosylceramides 1 and 2 was achieved for the first time using the glycopentaosyl trichloroacetimidate 25 as the key glycosyl donor.

Acknowledgements

We thank Mr. Tadashi Ti and Dr. Yoko Ohashi of the Institute of Physical and Chemical Research for recording the ESIMSs.

References

- [1] E.L. Berg, J. Magnami, R.A. Warnock, M.K. Robinson, and E.C. Butcher, *Biochem. Biophys. Res. Commun.*, 184 (1992) 1048–1055.
- [2] M.M. Palcic, A. Venot, R.M. Ratcliffe, and O. Hindsgaul, Carbohydr. Res., 190 (1989) 1–11; A. Kameyama, H. Ishida, M. Kiso, and A. Hasegawa, Carbohydr. Res., 209 (1991) C1–C4; D.P. Dumas, Y. Ichikawa, C.-H. Wong, J.B. Lowe, and R.P. Nair, Bioorg. Med. Chem. Lett., 1 (1991) 425–428; K.C. Nicolaou, C.W. Hummel, and N.J. Bockovich, J. Am. Chem. Soc., Chem. Commun., (1991) 870–872; K.C. Nicolaou, C.W. Hummel, and Y. Iwabuchi, J. Am. Chem. Soc., 114 (1992) 3126–3128; S.J. Danishefsky, J. Gervay, J.M. Peterson, F.E. McDonald, K. Koseki, T. Oriyama, D.A. Griffith, C.-H. Wong, and D.P. Dumas, J. Am. Chem. Soc., 114 (1992) 8331–8333; Y. Ichikawa, Y.-C. Lin, D.P. Dumas, G.-J. Shen, E. Garcia-Junceda, M.A. Williams, R. Bayer, C. Ketcham, L.E. Walker, J.C. Paulson, and C.-H. Wong, J. Am. Chem. Soc., 114 (1992) 9283–9298; Y.-C. Lin, Y. Ichikawa, and C.-H. Wong, J. Am. Chem. Soc., 115 (1993) 7549–7550.
- [3] P.J. Green, T. Tamatani, T. Watanabe, M. Miyasaka, A. Hasegawa, M. Kiso, C.-T. Yuen, M.S. Stoll, and T. Feizi, *Biochem. Biophys. Res. Commun.*, 188 (1992) 244–251.

- [4] K.C. Nicolaou, N.J. Bockovich, and D.R. Carcanague, J. Am. Chem. Soc., 115 (1993) 8843–8844; A. Lubineau, J. Le Gallic, and R. Lemoine, J. Chem. Soc., Chem. Commun., (1993) 1419–1420.
- [5] K. Koike, Y. Nakahara, and T. Ogawa, *Glycoconjugate J.*, 1 (1984) 107–109; K. Koike, M. Numata, M. Sugimoto, Y. Nakahara, and T. Ogawa, *Carbohydr. Res.*, 158 (1986) 113–123.
- [6] S. Sato, Y. Ito, T. Nukada, Y. Nakahara, and T. Ogawa, Carbohydr. Res., 167 (1987) 197-210.
- [7] H. Lönn, Carbohydr. Res., 139 (1985) 105-113; 115-121.
- [8] S. Sato, S. Nunomura, T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 29 (1988) 4097-4100.
- [9] L.M. Haines and E. Singleton, J. Chem. Soc., Dalton Trans., (1972) 1891–1896; J.J. Oltvoort, C.A.A. van Boeckel, J.H. De Koning, and J.H. van Boom, Synthesis, (1981) 305–308.
- [10] R.R. Schmidt and J. Michel, Angew. Chem. Int. Ed. Engl., 19 (1980) 731-732.
- [11] Wm. Rosenbrook, Jr., D.A. Riley, and P.A. Lartey, *Tetrahedron Lett.*, 26 (1985) 3-4; G.H. Posner and S.R. Haines, *ibid.*, 26 (1985) 935–938.
- [12] H. Vorbrüggen and K. Krolikiewcz, Angew. Chem. Int. Ed. Engl., 14 (1975) 421-422; S. Murata, M. Suzuki,
 R. Noyori, Tetrahedron Lett., 21 (1980) 2527-2528; T. Ogawa, K. Beppu, and S. Nakabayasi, Carbohydr. Res., 93 (1981) C6-C9.
- [13] T. Matumoto, H. Maeta, K. Suzuki, and G. Tsuchihasi, Tetrahedron Lett., 29 (1988) 3567-3570.
- [14] R.U. Lemieux, T. Takeda, and B.Y. Chung, ACS Symp. Ser., 39 (1976) 90-115.
- [15] T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 31 (1990) 1597-1600.
- [16] H.J. Koeners, J. Verhoeven, and J.H. van Boom, Rec. Trav. Chim. Pays-Bas, 100 (1981) 65-72.