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Abstract: Irradiations of alkyl phenylglyoxylates with sulfur-con-
taining carboxylates yielded the corresponding photodecarboxyla-
tive addition products in moderate to good yields of 26-58%.
Reductive photodimerization competed with decarboxylative addi-
tion in all cases. The reaction protocol was successfully transferred
to a microreactor. With potassium 2-(methylsulfanyl)propionate,
photoadditions gave diastereomeric mixtures with low selectivity
for the like-isomer.
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photo-

The photochemistry of phenylglyoxylates and phenylgly-
oxylamides has been intensively studied over the last de-
cades.!™ Among the many transformations examined are,
for example, Norrish,! Paterno—Biichi,? photoreduction,?
and photocyclization reactions.* For the related phthalim-
ide chromophore, we have recently developed the photo-
decarboxylative addition of carboxylates as a versatile
alkylation method and alternative to Grignard additions.®
The procedure utilizes easily accessible carboxylic acid
salts and has been scaled up using a 308 nm excimer sys-
tem.” We therefore became interested in applying the
photodecarboxylation protocol to simple alkyl phenylgly-
oxylates and a-thioalkyl-substituted carboxylates. Five
sulfur-containing carboxylates 3a—e were thus irradiated
at 350 nm in aqueous acetonitrile in the presence of either
methyl or ethyl phenylglyoxylate (1 and 2, Scheme 1).8
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Scheme 1 Photoreaction of 1/2 with sulfur-containing carboxylates
3a—e
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In all cases, the desired alkylation products 4a—e and Sa—
e were obtained as main products together with the corre-
sponding reductive dimerization product 6 and 7
(Table 1). Isolation by column chromatography furnished
products 4 and 5 in moderate to good yields of 26-58%.
Irradiation of 1 in the presence of 10 equivalents of 3a did
not prevent the formation of the undesired dimerization
product 6 and effectively the same ratio of 4a/6 (76:24)
was obtained. Likewise, irradiations of the 1/3a pair at
300 nm in either aqueous acetonitrile or aqueous acetone
gave no improvements in terms of yields or selectivities.

The simple reaction protocol was furthermore applied to
‘microphotochemistry’.’ A commercially available mi-
croreactor (dwell device, mikroglas), which was placed
under a UV panel (Luzchem) fitted with 5 UVA lamps,
was chosen (Figure 1).'° The synthesis of 4a was again
used as a model. Using a residence time of one hour, a 4a/
6 mixture of 76:24 was isolated.

Figure 1 Microreactor (dwell device, mikroglas) under a UV expo-
sure panel (Luzchem)

The diastereoselectivity of the reaction was furthermore
studied for the branched potassium 2-(methylsulfa-
nyl)propionate 8 (Scheme 2, Table 2). In both cases, the
diastereomeric ratio was determined by integration of
baseline-separated signals in the 'H NMR spectra of the
crude product as 1:1.1 in favor of the like-diastereomer.!!
The photoaddition products were isolated in good yields
of 55% (9) and 51% (10).

In order to demonstrate the superiority of the photodecar-
boxylation protocol, 1 was irradiated in dry acetonitrile in
the presence of 5 equivalents of 1,3-dithiane (11). Com-
pound 11 is advantageous over other thioethers since it is
a solid and thus easier to work with. After exhaustive irra-
diation of 22 hours, a 20:80 mixture of 4e and 6 was ob-
tained. Purification by column chromatography furnished
the desired addition product 4e in a low yield of 16%.



LETTER

Photoaddition of Sulfur-Containing Carboxylates to Phenylglyoxylates

2241

Table 1 Product Compositions and Experimental Details for Photoadditions of 1/2 with 3a—e

Glyoxylate R! Carboxylate ~ R2 R? Time (h) Product composition (%)*  Yield (%)°
4/5 6/7 4/5
1 Me 3a Me H 1 77 23 37
1 Me 3b Et H 2 88 12 50
1 Me 3c Ph H 2 90 10 53
1 Me 3d Bn H 3 81 19 58
1 Me 3e (CH,):S 4 66 34 27
2 Et 3a Me H 2 85 15 44
2 Et 3b Et H 2 65 35 44
2 Et 3c Ph H 2 77 23 43
2 Et 3d Bn H 2 67 33 36
2 Et 3e (CH,);S 4 65 35 26

* Determined by 1H NMR spectroscopy of the crude reaction mixture.
b Isolated yield.
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Scheme 2 Addition of potassium 2-(methylsulfanyl)propionate 8 to
1/2

Table2 Product Compositions and Experimental Details for Photo-
additions of 1/2 with 8

Glyoxylate R! Time (h) Product composition® Yield (%)°
9/10 6/7 lu 9/10

1 Me 4 80 20 1.1:1 55

2 Et 4 60 40 1.1:1 51

2 Determined by '"H NMR spectroscopy of the crude reaction mixture.
® Isolated yield.
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Scheme 3 Photoreaction of 1 with 1,3-dithiane 11

The general mechanistic scenario for photodecarboxyla-
tive additions of a-thioalkyl-substituted carboxylates to
alkyl phenylglyoxylates is depicted in Scheme 3. Based
on the available electrochemical and spectroscopic data of
simple phenylglyoxylates, the limiting maximum oxida-
tion potential for an exergonic photoinduced electron
transfer has been established to 1.7 V (vs. SCE).*>!2 Due
to the low oxidation potential of thioethers (for Me,S:
Eo, = 1.23 V vs. SCE") vs. carboxylates (for MeCO,™:
caled Ep, = 1.54 V in MeCN vs. SCE'¥), electron transfer
to the triplet excited phenylglyoxylates is expected to oc-
cur predominately from the sulfur atom. Subsequent o-de-
carboxylation of the thioether radical cation gives the
corresponding carbon-centered radical. Carbon bond for-
mation and protonation furnishes the addition products 4,
5,9, and 10, respectively (Scheme 4). Consequently, the
mechanism parallels that of the related phthalimide sys-
tem.!

Alternatively, the alkyl phenylglyoxylate radical anions
dimerize to the reduction products 6 and 7. Similar com-
petitive scenarios have been reported for other hydrogen
and electron donors.? The differences in yields and selec-
tivities when changing from the methyl ester 1 to the ethyl
ester 2 suggest that intramolecular H abstraction may
compete with photodecarboxylation.!

In comparison with simple thioethers (as 11),' the decar-
boxylation pathway (using 3e) is much more efficient and
chemoselective. Hence, the carboxylate group in a-posi-
tion to the thioether functions as a powerful activating
group for PET reactions. Furthermore, addition occurs ex-
clusively at the carbon that carries the directing carboxy-
late function. For thioethers themselves, competing
nonproductive electron and proton back-transfer reduces
the overall efficiency for addition.”!>* In addition, asym-
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Scheme 4 Mechanistic scenario

metrically substituted thioethers commonly give mixtures
of regioisomers.!’

In conclusion, a-thioalkyl-substituted carboxylates under-
go photodecarboxylative addition to alkyl phenylglyoxy-
lates. Conversion rates, isolated yields and selectivities
were higher compared to reactions with simple thioethers.
The easy procedure was suitable for adaptation in ‘micro-
photochemistry’.
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General Procedure for Irradiation

The alkyl phenylglyoxylate (1.5 mmol) was dissolved in
MeCN (50 mL). A solution of the potassium carboxylate
(4.5 mmol) in H,O (50 mL) was added, and the mixture was
irradiated (Rayonet Photochemical Reactor RPR-200;

A =350 £ 30 nm) at 15-20 °C in a Pyrex tube (A = 300 nm)
while purging with a slow stream of nitrogen. The progress
of the reaction was monitored by TLC analysis or by passing
the departing gas stream through a sat. Ba(OH), solution
until precipitation of BaCO; had ceased. Most of the MeCN
was evaporated, and the remaining solution was extracted
with EtOAc (4 X 25 mL). The combined organic layers were
washed with 5% NaHCOj; (1 x 25 mL) and brine (1 x 25
mL), dried over MgSO,, and evaporated. The products
were purified by flash column chromatography (eluent:
n-hexane-EtOAc = 5:1).

Selected Physical and Spectral Data for the Product
Methyl-2-(1,3-dithian-2-yl)-2-hydroxy-2-phenylacetate
(4e)

Yellowish solid, mp 104-106 °C. R;= 0.39 (SiO,, n-hexane—
EtOAc = 5:1). "H NMR (400 MHz, acetone-dy): § = 1.84 (m,
2 H, CH,), 2.40-2.46 (m, 1 H, SCH,), 2.56-2.62 (m, 1 H,
SCH,), 3.02-3.09 (m, 1 H, SCH,), 3.19-3.26 (m, 1 H,
SCH,), 3.61 (s, 3 H, OCH,), 4.48 (s, 1 H, CH), 5.14 (s, l H,
OH), 7.14-7.24 (br m, 3 H, H,,,,,,), 7.56 (dd, *J = 8.4 Hz,
4J=1.6 Hz, 2 H, H,,,,,) ppm. *C NMR (100 MHz, CDCl,):
8§=25.1(,1C,CH,),28.0( 1C,SCH,),283(,1C,
SCH,), 50.4 (d, 1 C, CH), 53.9 (q, 1 C, OCH;), 85.1 (s, 1 C,
COH), 126.0 (d, 2 C, CH,,), 128.3 (d, 1 C, CH,,,,), 128.4
(d,2C, CH,,,,), 139.1 (s, 1 C, Cqyom)» 173.8 (s, 1 C, C=0)
ppm. IR (KBr): v = 3490, 2953, 2925, 2892, 1725, 1239,
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Irradiation of 2 in benzene and in the presence of 5 equiv of
Me,S gave the corresponding addition product 5a in a yield
of 35%. Selectivity (7 vs. Sa) was determined as 60:40.
Similar results were obtained with 1,3-dithiolane.?*
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