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Abstract: Irradiations of alkyl phenylglyoxylates with sulfur-con-
taining carboxylates yielded the corresponding photodecarboxyla-
tive addition products in moderate to good yields of 26–58%.
Reductive photodimerization competed with decarboxylative addi-
tion in all cases. The reaction protocol was successfully transferred
to a microreactor. With potassium 2-(methylsulfanyl)propionate,
photoadditions gave diastereomeric mixtures with low selectivity
for the like-isomer.
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The photochemistry of phenylglyoxylates and phenylgly-
oxylamides has been intensively studied over the last de-
cades.1–5 Among the many transformations examined are,
for example, Norrish,1 Paternò–Büchi,2 photoreduction,3

and photocyclization reactions.4 For the related phthalim-
ide chromophore, we have recently developed the photo-
decarboxylative addition of carboxylates as a versatile
alkylation method and alternative to Grignard additions.6

The procedure utilizes easily accessible carboxylic acid
salts and has been scaled up using a 308 nm excimer sys-
tem.7 We therefore became interested in applying the
photodecarboxylation protocol to simple alkyl phenylgly-
oxylates and a-thioalkyl-substituted carboxylates. Five
sulfur-containing carboxylates 3a–e were thus irradiated
at 350 nm in aqueous acetonitrile in the presence of either
methyl or ethyl phenylglyoxylate (1 and 2, Scheme 1).8

Scheme 1 Photoreaction of 1/2 with sulfur-containing carboxylates
3a–e

In all cases, the desired alkylation products 4a–e and 5a–
e were obtained as main products together with the corre-
sponding reductive dimerization product 6 and 7
(Table 1). Isolation by column chromatography furnished
products 4 and 5 in moderate to good yields of 26–58%.
Irradiation of 1 in the presence of 10 equivalents of 3a did
not prevent the formation of the undesired dimerization
product 6 and effectively the same ratio of 4a/6 (76:24)
was obtained. Likewise, irradiations of the 1/3a pair at
300 nm in either aqueous acetonitrile or aqueous acetone
gave no improvements in terms of yields or selectivities.

The simple reaction protocol was furthermore applied to
‘microphotochemistry’.9 A commercially available mi-
croreactor (dwell device, mikroglas), which was placed
under a UV panel (Luzchem) fitted with 5 UVA lamps,
was chosen (Figure 1).10 The synthesis of 4a was again
used as a model. Using a residence time of one hour, a 4a/
6 mixture of 76:24 was isolated.

Figure 1 Microreactor (dwell device, mikroglas) under a UV expo-
sure panel (Luzchem)

The diastereoselectivity of the reaction was furthermore
studied for the branched potassium 2-(methylsulfa-
nyl)propionate 8 (Scheme 2, Table 2). In both cases, the
diastereomeric ratio was determined by integration of
baseline-separated signals in the 1H NMR spectra of the
crude product as 1:1.1 in favor of the like-diastereomer.11

The photoaddition products were isolated in good yields
of 55% (9) and 51% (10).

In order to demonstrate the superiority of the photodecar-
boxylation protocol, 1 was irradiated in dry acetonitrile in
the presence of 5 equivalents of 1,3-dithiane (11). Com-
pound 11 is advantageous over other thioethers since it is
a solid and thus easier to work with. After exhaustive irra-
diation of 22 hours, a 20:80 mixture of 4e and 6 was ob-
tained. Purification by column chromatography furnished
the desired addition product 4e in a low yield of 16%.
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The general mechanistic scenario for photodecarboxyla-
tive additions of a-thioalkyl-substituted carboxylates to
alkyl phenylglyoxylates is depicted in Scheme 3. Based
on the available electrochemical and spectroscopic data of
simple phenylglyoxylates, the limiting maximum oxida-
tion potential for an exergonic photoinduced electron
transfer has been established to 1.7 V (vs. SCE).4b,12 Due
to the low oxidation potential of thioethers (for Me2S:
EOx = 1.23 V vs. SCE13) vs. carboxylates (for MeCO2

–:
calcd EOx = 1.54 V in MeCN vs. SCE14), electron transfer
to the triplet excited phenylglyoxylates is expected to oc-
cur predominately from the sulfur atom. Subsequent a-de-
carboxylation of the thioether radical cation gives the
corresponding carbon-centered radical. Carbon bond for-
mation and protonation furnishes the addition products 4,
5, 9, and 10, respectively (Scheme 4). Consequently, the
mechanism parallels that of the related phthalimide sys-
tem.15

Alternatively, the alkyl phenylglyoxylate radical anions
dimerize to the reduction products 6 and 7. Similar com-
petitive scenarios have been reported for other hydrogen
and electron donors.3 The differences in yields and selec-
tivities when changing from the methyl ester 1 to the ethyl
ester 2 suggest that intramolecular H abstraction may
compete with photodecarboxylation.1

In comparison with simple thioethers (as 11),16 the decar-
boxylation pathway (using 3e) is much more efficient and
chemoselective. Hence, the carboxylate group in a-posi-
tion to the thioether functions as a powerful activating
group for PET reactions. Furthermore, addition occurs ex-
clusively at the carbon that carries the directing carboxy-
late function. For thioethers themselves, competing
nonproductive electron and proton back-transfer reduces
the overall efficiency for addition.9,15a In addition, asym-

Table 1 Product Compositions and Experimental Details for Photoadditions of 1/2 with 3a–e

Glyoxylate R1 Carboxylate R2 R3 Time (h) Product composition (%)a Yield (%)b

4/5 6/7 4/5 

1 Me 3a Me H 1 77 23 37

1 Me 3b Et H 2 88 12 50

1 Me 3c Ph H 2 90 10 53

1 Me 3d Bn H 3 81 19 58

1 Me 3e (CH2)3S 4 66 34 27

2 Et 3a Me H 2 85 15 44

2 Et 3b Et H 2 65 35 44

2 Et 3c Ph H 2 77 23 43

2 Et 3d Bn H 2 67 33 36

2 Et 3e (CH2)3S 4 65 35 26

a Determined by 1H NMR spectroscopy of the crude reaction mixture.
b Isolated yield.

Scheme 2 Addition of potassium 2-(methylsulfanyl)propionate 8 to
1/2
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a Determined by 1H NMR spectroscopy of the crude reaction mixture.
b Isolated yield.
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metrically substituted thioethers commonly give mixtures
of regioisomers.17

In conclusion, a-thioalkyl-substituted carboxylates under-
go photodecarboxylative addition to alkyl phenylglyoxy-
lates. Conversion rates, isolated yields and selectivities
were higher compared to reactions with simple thioethers.
The easy procedure was suitable for adaptation in ‘micro-
photochemistry’.
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