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ABSTRACT 26 

Glioblastoma multiforme (GBM) is the most devastating and widespread primary central nervous 27 

system tumor. Pharmacological treatment of this malignance is limited by the selective permeability 28 

of the blood-brain barrier (BBB) and relies on a single drug, temozolomide (TMZ), thus making the 29 

discovery of new compounds challenging and urgent. Therefore, aiming to discover new anti-30 

glioma drugs, we developed robust machine learning models for predicting anti-glioma activity and 31 

BBB penetration ability of new compounds. Using these models, we prioritized 41 compounds from 32 

our in-house library of compounds, for further in vitro testing against three glioma cell lines and 33 

astrocytes. Subsequently, the most potent and selective compounds were resynthesized and tested in 34 

vivo using an orthotopic glioma model. This approach revealed two lead candidates, 4m and 4n, 35 

which efficiently decreased malignant glioma development in mice, probably by inhibiting 36 

thioredoxin reductase activity, as shown by our enzymological assays. Moreover, these two 37 

compounds did not promote body weight reduction, death of animals, or altered hematological and 38 

toxicological markers, making then good candidates for lead optimization as anti-glioma drug 39 

candidates. 40 

 41 
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1. Introduction 51 

Glioblastoma multiforme (GBM) or grade IV glioma, is the most commonly occurring and 52 

aggressive type of primary central nervous system (CNS) tumor [1,2]. Most of GBM occur 53 

particularly in the brain, but they can also appear in cerebellum brainstem and also in spinal cord 54 

[3,4]. This malignance can manifest at any age, but is more frequent in adult men with a median age 55 

of 64 years [5]. The majority symptoms of GBM include intracranial pressure, headache and focal 56 

or progressive neurologic deficits [5]. Consequently, GBM prognosis remains dismal for decades  57 

with a median overall survival of  ~14 months, with less than 10% of patients surviving beyond five 58 

years [6,7]. 59 

GBM is particularly difficult to treat due to its characteristic of excessive invasiveness and fast-60 

growing behavior, as well as its particular location and the selective permeability offered by the 61 

blood-brain barrier (BBB)[8,9]. At present, chemotherapy is the main postsurgical and adjuvant 62 

therapy for GBM, and the alkylating agent temozolomide (TMZ) is the first-line drug frequently 63 

combined with radiotherapy [10]. TMZ is absorbed orally and presents favorable toxicity profile 64 

compared with older alkylating agents such as carmustine [11]. However, the emergence of 65 

temozolomide resistance hampers its use in GBM patients [12,13].  Hence, the discovery of new 66 

anti-glioma drugs is urgently needed. 67 

In this context, quantitative machine learning (ML) has exerted profound impact on drug 68 

discovery, making it faster and less expensive [14,15]. ML is a growing field of artificial 69 

intelligence that uses different statistical techniques to enable computers to learn from various data 70 

types without being explicitly [16]. Several ML methods, such as Support Vector Machines [17], 71 

Random Forest [18–20], and more recently Deep Neural Networks [21–24], have been utilized 72 

for drug discovery. Methodologically, ML tools uses pattern recognition algorithms to discern 73 

mathematical relationships between experimental observations of small molecules and extrapolate 74 

them to predict biological properties of novel compounds.[25–27] So, ML represents a helpful tool 75 

for virtual screening (VS) of new chemicals with desired biological properties.  76 



In this work, we developed ML models and applied them for predicting the anti-proliferative 77 

activity against glioma cells and the BBB penetration ability of new compounds from our in-house 78 

library. Then, the prioritized compounds were experimentally evaluated in vitro against glioma cells 79 

and astrocytes, and in vivo using an orthotopic glioma model.  80 

2. Results and discussion 81 

The general study design is presented in Fig 1. Briefly, we followed successive steps as follows: 82 

(i) data collection, curation, and integration of compounds reported in the literature with activity 83 

against C6 glioma cells and BBB penetration; (ii) chemical space analysis of curated datasets; (iii) 84 

development and validation of ML models; (iv) VS of an in-house chemical database (1,250 85 

compounds) using the ML models for prioritization of compounds; (v) in vitro experimental 86 

validation using phenotypic and enzymatic assays; (vi) chemical synthesis of most promising 87 

compounds; and (vii) in vivo investigation using orthotopic glioma model. 88 

 89 

Figure 1. Study design. (i) data collection, curation, and integration of molecules with activity 90 

against C6 glioma cells and BBB penetration; (ii) chemical space analysis of curated datasets; (iii) 91 

development of binary and continuous QSAR models; (iv) VS of an in-house chemical database 92 

(containing 1,250 compounds); (v) in vitro experimental validation using phenotypic and enzymatic 93 

assays; (vi) chemical synthesis of most promising compounds; (vii) in vivo investigation using 94 

orthotopic glioma model, and (viii) identification of novel anti-glioma leads. 95 



Initially, two datasets of compounds with anti-glioma (Supplementary File S1) and blood-brain 96 

barrier (File S2) bioactivity data were retrieved from the ChEMBL database (ID: CHEMBL614657 97 

[28]) and scientific literature [29–32], respectively. Both datasets were submitted to a rigorous data 98 

curation protocol. An activity threshold of 10 µM based on half maximal effective concentration 99 

(EC50) against C6 rat glioma cells was defined for discrimination between active and inactive 100 

compounds. Compounds with experimental logBB greater than or equal to −1 were labeled as 101 

BBB+ (penetrating) and those with logBB below −1 as BBB− (not penetrating). Subsequently, the  102 

C6 dataset (97 active and 173 inactive compounds), and BBB dataset (433 BBB− and 1436 BBB+ 103 

compounds) were balanced using a linear under-sampling approach [33]. 104 

2.1. Chemical space analysis 105 

To visualize the structural diversity of our datasets, we performed a principal component 106 

analysis (PCA, see Supplementary Figure S1). The PCA reduces high-dimensional space composed 107 

by Molecular ACCess System (MACCS) keys into a smaller number of orthogonal (non-correlated) 108 

variables called principal components (PCs), thus making it more manageable and comprehensible 109 

by extracting essential information [34,35]. The PCA model with the first two PCs described 34.8% 110 

of total data variance. Projecting variables on the planes defined by a PC1 and PC2 allows an 111 

interesting chemical space analysis, in which most of the active (green dots) and inactive (yellow 112 

dots) compounds from C6 dataset overlap within the same regions of chemical space (defined by 113 

PC1 and PC2) of BBB+ (blue dots) and BBB− (red dots) compounds from the BBB dataset. This 114 

analysis revealed that multiple compounds active against glioma cells can also potentially penetrate 115 

the BBB. Based on these data, we developed predictive computational models for both biological 116 

properties in order to select only compounds predicted as active for C6 cells and BBB+. 117 

2.2. Performance of ML models 118 

ML models were built to distinguish active vs. inactive compounds for C6 cell line (see 119 

Supplementary File S1) and BBB+ vs. BBB− compounds (Supplementary File S2). Statistical 120 



characteristics of developed ML models estimated by 5-fold external cross-validation are reported 121 

in Table 1. According to the statistical results, the combination of Morgan and FeatMorgan 122 

fingerprints (radius 2: FeatMorgan_2, Morgan_2; radius 4: FeatMorgan_4, Morgan_4) with 123 

Random Forest algorithm led to predictive binary ML models. Briefly, correct classification rate 124 

(CCR) values were ranging between 0.83–0.87; sensitivity (SE) 0.82–0.87; specificity (SP) 0.82–125 

0.87; positive predictive value (PPV) 0.84–0.88; negative predictive value (NPV) 0.81–0.88; and a 126 

Cohen’s kappa (κ) 0.66–0.73. The model built using Morgan_2 demonstrated the best performance 127 

among all other models developed for antiproliferative activity against C6 cells (CCR = 0.87; SE = 128 

0.89; SP = 0.85) and BBB (CCR = 0.85; SE = 0.81; and SP = 0.89). 129 

Table 1. Summarized statistical characteristics of ML models. 130 

Models CCR SE SP PPV NPV κ Coverage 

Glioma (C6 cell line) models 

Morgan_2 0.87 0.89 0.85 0.85 0.88 0.73 0.52 

Morgan_4 0.85 0.84 0.86 0.85 0.84 0.69 0.51 

FeatMorgan_2 0.85 0.86 0.84 0.84 0.85 0.69 0.59 

FeatMorgan_4 0.85 0.86 0.84 0.84 0.85 0.69 0.51 

Blood-brain barrier (BBB) models 

Morgan_2 0.85 0.81 0.89 0.88 0.82 0.70 0.59 

Morgan_4 0.84 0.81 0.88 0.87 0.82 0.68 0.57 

FeatMorgan_2 0.83 0.79 0.87 0.86 0.81 0.66 0.61 

FeatMorgan_4 0.84 0.80 0.88 0.87 0.81 0.67 0.57 

CCR: correct classification rate; SE: sensitivity; SP: specificity; PPV: positive predictive value; and NPV: negative 131 

predictive value; κ: Cohen’s kappa; Coverage: percentage of test set compounds within the applicability domain. 132 

2.3.  Virtual screening 133 

The virtual screening (VS) was carried out following the workflow presented in Figure 2.  134 



 135 

Figure 2. Virtual screening workflow used for identifying new anti-glioma hits. Colloidal 136 

aggregation tool was used to filter out molecules that are known to aggregate in experimental 137 

assays; chemical similarity analysis and visual inspection were performed to select a subset of 138 

structurally diverse virtual hits. 139 

Initially, 1,250 structurally diverse compounds (synthesized or purchased) available in our in-140 

house database were compiled and standardized for VS. Then, the best ML models developed for 141 

C6 and BBB were used to prioritize potential anti-glioma compounds. The final selection of hits can 142 

be summarized as follows: (i) the compounds predicted as active and BBB+ by the ML models; and 143 

(ii) compounds inside the applicability domain (AD) of the ML models. The AD was determined in 144 

order to set “reliable” and “unreliable” predictions [36,37]. The predictions were considered reliable 145 

when the virtual hits are within the chemical space of the molecules used for training models. 146 

Subsequently, a colloidal aggregation tool was used to filter out molecules that are known to 147 

aggregate in experimental assays [38,39]. Finally, we performed a chemical similarity analysis to 148 

select a subset of structurally diverse virtual hits. At the end of this process, twelve putative hits 149 

with model probability >0.65 (Table 2) were selected for biological evaluation. 150 

2.4. In vitro antiproliferative activity 151 



The twelve prioritized hits were primarily evaluated in vitro against three glioma cell lines 152 

(Table 2). The EC50 values (see Table 2) indicated that three compounds, 2-[(E)-2-(2-153 

nitrophenyl)ethenyl]quinolin-8-yl propanoate (1), (2E)-1-[4-(morpholin-4-yl)phenyl]-3-(5-154 

nitrofuran-2-yl)prop-2-en-1-one (4), and (2E)-1-[4-(1H-imidazol-1-yl)phenyl]-3-(5-nitrothiophen-2-155 

yl)prop-2-en-1-one (5) were potent at inhibiting the cell growth, showing activities in 156 

submicromolar range against C6, U251MG, and U87MG cells. 157 



Table 2. ML probability of selected virtual screening hits, in vitro activity against glioma cell lines (C6, U251MG and U87MG), cytotoxicity on 158 

astrocytes and selectivity index. 159 

ID  Chemical structure 

ML 

Probability 
 EC50 (µM) ± SD 

 
Selectivity indexb 

C6  BBB  C6 U251MG U87MG Astrocytes C6 U251MG U87MG 

1 

 

0.76 0.67  6.3 ± 0.8 10.1 ± 2.2 10.5 ± 2.8 55.2 ± 5.5  8.7 5.4 5.3 

2 

 

0.81 0.94  >50 >50 − −  − − − 

3 

 

0.82 0.94  >50 >50 − −  − − − 

4 

 

0.88 0.96  6.6 ± 2.1 37.8 ± 3.6 9.8 ± 2.9 75.8 ± 8.5  11.5 2 7.7 



5 

 

0.92 0.94  1.9 ± 1.1 9.4 ± 2.7 10.1 ± 3.4 40.4 ± 3.2  21.3 4.3 4 

6 
 

0.68 0.95  48.9 ± 4.4 >50 − −  − − − 

7 

 

0.76 0.91  >50 >50 − −  − − − 

8 
 

0.70 0.96  >50 >50 − −  − − − 

9 

 

0.72 0.68  >50 >50 − −  − − − 

10 
 

0.81 0.96  >50 >50 − −  − − − 

11 
 

0.80 0.98  46.6 ± 5.2 >50 − −  − − − 

12 
 

0.88 0.89  >50 >50 − −  − − − 



TMZ a 
 

− −  60.46 ± 3.62 >200 >200 −  − − − 

aData retrieved from reference [40]; bSelectivity index calculated by astrocyte CC50/glioma cell line EC50; The data are expressed as mean ± SD of three independent assays. 160 

Dashed SI values means that cytotoxicity against astrocytes cannot be calculated because compounds did not show activity even at highest concentrations used in the assay. 161 



Since heteroaryl chalcones 4 (EC50 = 6.6 µM and 9.8 µM for C6 and U87MG, respectively) 162 

and 5 (EC50 = 1.9 µM, 9.4 µM and 10.1 µM for C6, U251MG and U87MG, respectively) were 163 

the most promising anti-glioma hits in experimental assays, a new round of biological assays 164 

were performed with 29 structural analogs available on in-house database (Table 3).  165 

 166 



Table 3. In vitro cytotoxicity of heteroaryl chalcones against glioma cell lines (C6, U251MG, and U87MG) and primary astrocytes, and thioredoxin 167 

reductase activity. 168 

 

ID 
Chemical structure 

 

ML 

probability 
 EC50 (µM) ± SD TrxR a 

(%) 

Selectivity indexb 

R1 R2 R3 C6  BBB  C6 U251MG U87MG Astrocytes C6 U251MG U87MG 

4a H Br A  0.85 0.97  2.7 ± 1.1 21.4 ± 4.4 12.6 ± 3.4 85.4 ± 7.4 − 31.6 3.9 6.7 

4b H I A  0.86 0.97  2.1 ± 0.7 12.5 ± 4.1 5.2 ± 2.7 68.2 ± 5.2 − 32.5 5.4 13.1 

4c H SCH3 A  0.85 0.91  1.6 ± 1.1 14.2 ± 3.3 3.9 ± 1.7 28.4 ± 3.6 56.4  17.7 2 7.3 

4d H C(CH3)3 A  0.84 0.88  28.6 ± 5.7 44.5 ± 6.3 − − − − − − 

4e H (CH2)3CH3 A  0.65 0.96  1.7 ± 0.8 3.9 ± 2.1 5.8 ± 1.6 41.2 ± 2.8 80.7  24.2 10.6 7.1 

4f H 
 

A  0.86 0.97  3.5± 1.2 22.6 ± 2.5 13.4 ± 2.9 45.3 ± 4.4 − 12.9 2 3.4 



4g H 

 

A  0.86 0.98  16.4 ± 5.1 35.9 ± 3.3 35.4 ± 7.7 65.8 ± 5.7 − 4 1.8 1.8 

4h H 

 

A  0.76 0.96  17.7 ± 4.5 24.6 ± 4.4 − − − − − − 

4i H 

 

A  0.80 0.96  5.1± 1.6 4.4 ± 1.5 9.5 ± 3.3 57.2 ± 5.2 − 11.2 13 6 

4j H 

 

A  0.87 0.97  48.7 ± 6.6 >50 − − − − − − 

4k H 

 

A  0.73 0.94  1.5 ± 0.1 16.7 ± 6.4 4.9 ± 2.2 44.3 ± 4.2 0 29.5 2.6 9 

4l H 

 

A  0.92 0.87  6.6 ± 2.1 37.8 ± 3.6 9.8 ± 2.9 75.8 ± 8.5 − 11.5 2 7.7 

4m CH3 H A  0.81 0.96  2.1 ± 0.5 2.3 ± 0.3 3.3 ± 0.8 52.2 ± 4.8 95.2 24.8 22.7 15.8 

4n Br H A  0.81 0.97  1.4 ± 0.9 5.8 ± 1.3 6.8 ± 2.4 35.6 ± 3.2 78.7 25.4 6.1 5.2 

5ª H SCH3 B  0.84 0.97  30.5 ± 6.8 47.1 ± 6.2 − − − − − − 

5b H CH3 B  0.92 0.87  7.8 + 3.1 23.3 ± 3.4 19.2 ± 3.5 >100 − − − − 



5c H SCH3 B  0.90 0.84  14.4 ± 5.1 24 ± 5.6 45.1 ± 5.2 98.0 ± 8.9 − − − − 

5d H C(CH3)3 B  0.89 0.79  18.5± 4.1 16.4 ± 5.1 32.3 ± 4.3 88.7 ± 8.3 3.6 − − − 

5e H (CH2)3CH3 B  0.68 0.90  8.4 ± 2.1 6.4 ± 3.3 12.3 ± 3.5 >100 60.4 − − − 

5f H 

 

B  0.87 0.88  >50 26.4 ± 3.9 − − − − − − 

5g H 

 

B  0.92 0.87  23.6 ± 4.1 >50 − − − − − − 

5h H 

 

D  0.92 0.98  14.5 ± 3.3 35.1 ± 5.1 − − − − − − 

5i H 

 

D  0.84 0.99  36.6 ± 4.4 >50 − − − − − − 

13 H 

 

E  0.83 0.87  >50 >50 − − − − − − 

14 Br H E  0.87 0.94  22.3 ± 5.1 32.1 ± 4.2 − − − − − − 

15 I H E  0.86 0.93  14.6 ± 3.5 21.4 ± 3.1 13.4 ± 3.1 >100 − >6.8 >4.7 >7.5 



16 H 

 

F  0.88 0.94  32.5 ± 5.2 20.3 ± 3.6 − − − − − − 

17 H 

 

G  0.91 0.94  >50 >50 − − − − − − 

18 H 

 

H  0.86 0.95  49.5 ± 6.7 >50 − − − − − − 

aPercent of inhibition of thioredoxin reductase activity at 100 µM; bSelectivity index calculated by astrocyte CC50/glioma lineage EC50; The data are expressed as mean ± SD of 169 

three independent assays. Dashed SI values means that cytotoxicity against astrocytes cannot be calculated because compounds did not show significant cytotoxicity even at 170 

highest concentrations used in the assay. 171 

 172 



The most promising compound was the nitrofuran analog (2E)-1-(3-methylphenyl)-3-(5-nitrofuran-2-173 

yl)prop-2-en-1-one (4m) with EC50 of 2.1 µM, 2.3 µM and 3.3 µM for C6, U251MG and U87MG cells, 174 

respectively.  The compounds 4c, 4e, 4n, and 4k were the most active against C6 cells (EC50 ~1.5), but 175 

lost activity against U251MG and U87MG cells in comparison to 4m. The positive control TMZ had 176 

activity against C6 cells with an EC50 value of 60.46 µM, and showed minimal activity in U251MG and 177 

U87MG cells at 200 µM [40], probably because TMZ requires a slightly basic pH to spontaneously 178 

converts to a bioactive methylating agent [41]. Concentration-response curves used for EC50 179 

determination of 4e, 4m, and 4n are shown in Figure 3A. Considering the lipophilicity (LogP calculate 180 

~3.6 for 4m and 4n, and 4.8 for 4e) of test compounds, we performed cytotoxicity curves in C6 cells in 181 

the presence of varying Triton X-100 concentrations (0.001%, and 0.0001%). At 72 h treatment, 4e, 4m 182 

and 4n cytotoxicity (EC50) was similar to C6 cells without detergent thereby excluding a possible 183 

promiscuous colloidal aggregate effect (Figure 3B) as well as indicating that cytotoxicity of the hit 184 

compounds is related to specific inhibition. It is noteworthy that Triton-X100 0.01% killed all C6 cells, 185 

thus making the EC50 estimation unfeasible at this concentration (data not shown). 186 



 187 

Figure 3. (A) Viability concentration-responses curves for compounds 4e, 4m, and 4n against C6, 188 

U251MG, U87MG, and astrocytes after 48h of incubation. (B) Concentration-response curves for test 189 

compounds in the presence of Triton X-100 in C6 cells (72 h treatment, sulforhodamine B (SRB) assay).  190 

The data are expressed as mean ± SD of three independent assays. * Different from untreated cells 191 

(p<0.05, ANOVA). 192 

2.5. In vitro Cytotoxicity assays in astrocytes 193 

The hit compounds were also evaluated for their cytotoxicity in vitro against astrocytes, as a control 194 

for normal glial cells. These compounds demonstrated modest to moderate cytotoxicity on this assay 195 

(see Table 3 and Figure 3), with selectivity indexes (SI) ranging between 1.8 and 32.5. The compound 196 

4m showed the most promising cytotoxicity profile, with SI of 24.8, 22.7 and 15.8 for C6, U251MG and 197 

U87MG cells, respectively. 198 



2.6. Inhibition of thioredoxin reductase (TrxR) activity and involvement in thiol homeostasis  199 

Since 5-nitrofuran chalcones display potent antiproliferative activities, we then asked the possible 200 

cellular target of these in glioma cells. Chalcones contain an α,β-unsaturated ketone moiety, a key 201 

structure for many reported TrxR inhibitors [42,43]. Considering this key feature, we made 202 

computational predictions with these molecules using binary ML models developed in-house for TrxR 203 

(data not shown). As a result, all investigated compounds were predicted as inhibitors this enzyme.  In 204 

view of this, the most promising compounds were tested in vitro against TrxR. As shown in Table 3, 205 

compound 4m showed the greatest TrxR inhibitory activity (95.2% at 100 µM), followed by 4e (80.7%) 206 

and 4n (78.7%). In addition, compounds 4e and 4m showed dose-dependent decrease of TrxR activity, 207 

with IC50 values ~25 µM.   208 

Compounds with α,β-unsaturated carbonyl system (i.e. chalcones) have been reported to form 209 

covalent bonds with cysteines [44]. Consequently, it has been suggested that chalcones are pan-assay 210 

interference compounds (PAINS) [45] due to reactivity under assay conditions. In order to evaluate the 211 

role of thiol residues in 4n, 4m and 4e cytotoxicity, we pre-incubated C6 glioma cells with 2 mM N-212 

acetyl-cysteine (NAC) for 1 h prior to test compounds treatments. The classical TrxR inhibitor, 213 

auranofin (Au), was used as a positive control. Cell viability assays showed that NAC abrogated the 214 

cytotoxicity of our test compounds as well as auranofin (Fig. 4A).  Using a cell-free in vitro system, we 215 

observed that 4n, 4m and 4e (10 to 500 µM) were not alkylating agents in presence of NAC and bovine 216 

serum albumin (BSA) at physiological conditions (pH 7.4, 37 ºC) (Figures 4B and 4C). The alkylating 217 

agent N-ethylmaleimide (NEM) was used as a positive control for cysteine alkylation, leading to thiol 218 

depletion (R-SH) at 50 µM (Figs. 4B and 4C).  These results indicate that 4n, 4m and 4e are PAINS 219 

even though thiol homeostasis and inhibition of TrxR may play a role, at least in part, in 5-nitrofuran 220 

chalcones cytotoxicity. 221 

 222 



 223 

Figure 4. (A) Effect of NAC pretreatment (2 mM, 2 h) on 4e, 4m, 4n and auranofin (Au) cytotoxicity in 224 

C6 glioma cells incubated for 72 h as assessed by SRB assay. (B-C) In vitro reactivity of 4e, 4m and 4n 225 

with reduced thiol residues (R-SH) of NAC and BSA in cell-free assay as determined by 5,5'-dithiobis-226 

2-nitrobenzoic acid (DTNB) assay. In B and C, the thiol-alkylating agent NEM was used as a positive 227 

control for thiol alkylation/depletion. *different from untreated cells or control group (NAC or albumin 228 

alone, in B and C graphs); #different from untreated and test compound-treated cells at equivalent 229 

concentrations (1-way ANOVA, post-hoc Tukey; p<0.05).  230 

2.7. Structure-activity relationships (SAR) 231 

Based on the experimental results, we derived structure-activity relationships (SAR) rules to reveal 232 

the molecular substituents favorable and unfavorable for anti-glioma activity (Figure 5). The information 233 

revealed by the SAR allowed us to derive the following rules: (i) halogen atom and methyl in R1 234 

position increases the activity; (ii) aliphatic six-member rings and hydrophobic groups with primary to 235 

tertiary carbons in R2 position increases the activity; (iii) 5-nitrofuran ring in R3 position increases the 236 

activity; (iv) aromatic rings or hydrophobic groups with quaternary carbons in R2 position decreases the 237 



activity; (v) 5-nitrothiophene, furan, 5-chlorothiophene, and six-member aromatic rings in the R3 238 

position decreases the activity in glioma cells. 239 

 240 

Figure 5. Derived SAR rules for chalcones with antiproliferative activity against glioma cells. 241 

Substituents inside green boxes increase the activity, whereas substituents in red boxes decrease the 242 

activity. 243 

2.8. Synthesis of lead candidates 244 

The most promising hit compounds (i.e., 4e, 4m, and 4n) identified in antiproliferative assay were 245 

selected for in vivo testing. Considering the insufficient amount of compound mass for in vivo assays, we 246 

resynthesized them again in larger scale using Claisen-Schmidt condensation using acetic acid as solvent 247 

and sulfuric acid (H2SO4) as a catalyst [46]. For the resynthesis of desired chalcones in large quantities 248 

required for in vivo testing it was necessary an optimization study and improvement of the yields 249 

obtained in the methodology previously described by Dr. Andrade´s research group. Gomes and co-250 

workers [46] reported on previous study that standard condition under basic medium could not be used 251 

because the starting materials are alkali-sensitive. Thus, the resynthesis of our test chalcones was carried 252 

out in acidic medium (Table 4). Table 4 lists the optimized conditions employed for the resynthesis of 253 

4n, under reflux at 100 ºC, reduced evaporate pressure (as previously reported), isolation with cooled 254 

water, H2SO4 catalyst reduced, and microwave.  255 

Table 4. Claisen-Schmidt condensation under different conditions. 256 



 

Entry Method* Yield (%) Reaction time (h) 

1 Reflux + reduced evaporate pressure 31% 30 

2 Reflux + isolation with cooled water 87% 20 

3 Reflux + 0.5 H2SO4 catalyst 56 % 30 

4 Microwave 37 % 02 

*Conditions we employed for the resynthesis of compound 4n. 257 

The protocol used in entry 1 was used in the previous work where after consumption of all starting 258 

materials (monitored by TLC), the reaction mixture is concentrated under reduced pressure to remove 259 

the acetic acid, thus obtaining the desired chalcone. The problem encountered with the increase in scale 260 

is that a drastic decrease in yield is observed because of the higher amount of sulfuric acid causing the 261 

degradation of the formed product. As we may notice from Table 4, under reflux at 100 ºC and pressure 262 

reduced the reaction pathways had other disadvantages beside low yield (31%), the long reaction time 263 

(30h) Under microwave irradiation (entry 4), the reaction time decreased substantially (2h), but yield 264 

(37%) remained similar. Also explained by the presence of the acid medium is observed a large amount 265 

of degradation of material. The reduction of the amount of sulfuric acid (entry 3) was not satisfactory 266 

because there was no total consumption of the starting materials with the same reaction time as the entry 267 

1. The protocol used in entry 2 was the better choice had the higher yield (87%), where after 268 

consumption of all starting materials (monitored by TLC), the reaction mixture was poured into cooled 269 

water, precipitating the desired chalcone. Taking into consideration the aspects mentioned above, 270 

especially those related to yield, we decided to extend the protocol entry 2 for 4e and 4m resynthesis. 271 

2.9.  In vivo anti-glioma activity 272 

Many prior in vitro studies have found potential candidates to treat gliomas, but most of them did not 273 

include animal testing or failed in in vivo studies. In addition, most of prior studies use 274 



immunocompromised mice [47] and subcutaneous xenografts [48,49], which lack important components 275 

of tumor microenvironment and blood barrier restrictions, respectively. In this study, we confirmed the 276 

in vivo anti-glioma effects of resynthesized compounds (4e, 4m, and 4n) using a very aggressive model 277 

of glioma in immunocompetent mice orthotopically implanted. The overall design of the study, 278 

treatment groups, route of injection, and short-term/long-term treatment schedules are described in 279 

Figure 6A. Briefly, we first implanted GL261 cells into the right hemisphere of mice brain. Seven days 280 

after implantation, vehicle or test compounds were intraperitoneally or orally administrated every day 281 

for 10 days. The alkylating agent temozolomide (TMZ) was used as a positive control for anti-glioma 282 

activity in mice. During the study, the treated animals did not show any visible toxic effects or mortality 283 

and had no significant difference in body weights compared to the negative control group (Figure 6B). 284 

The treatment with compounds by gavage (Figure 6C) does not significantly decrease (p >0.05) the 285 

tumor volume compared to negative control group (vehicle consisted of saline 0.9%, DMSO 10%, and 286 

Tween-80 0.3%), indicating the poor oral absorption of these molecules. However, the tumor volume of 287 

mice treated intraperitonially with 4m (100 mg/kg) and 4n (100 mg/kg) significantly reduced by 43.8% 288 

and 41.3% (Table S1 and Figure 6D), respectively, compared to vehicle-treated mice. These results 289 

indicate that the compounds are able to cross the BBB, confirming our ML predictions. In addition, no 290 

significant differences in tumor volume were observed between 4m (100 mg/kg) and 4n (100 mg/kg) 291 

treatment and the positive control group (TMZ at 20 mg/kg, p > 0.05).  292 

 293 



 294 

Figure 6. Preclinical testing of 4e, 4m, and 4n in brain implanted GL261 gliomas. (A) Animal study 295 

design: from treatment day 1 (7th protocol day), the test compounds were administered once a day for a 296 

total 10 days. TMZ was administrated in alternate days (protocol days 7, 9, 11, 13 and 15th. (B) Delta 297 

body weight change (final – initial) in C57BL/6 mice across the different treatments; (C) GL261 tumor 298 

volumes (mm3) quantification of the mice treated by gavage at the 17th day; (D) GL261 tumor volumes 299 

(mm3) quantification of the mice treated by intraperitoneal injection at the 17th day. Asterisks denote 300 

differences from vehicle treated mice (*p<0.05; **p<0.01; ***p<0.001); &different from test compounds 301 

at 10 mg/kg  (1-way ANOVA, post-hoc Tukey). 302 

2.10. Toxicity studies 303 

For toxicity studies, the blood samples were collected at the end of treatment of glioma implanted 304 

mice and various enzyme markers and blood parameters were estimated (Table 5). Treatment with 4m, 305 

4e and 4n at 100 mg/kg did not alter the levels of enzymatic markers for hepatotoxicity, i.e. alanine 306 

aminotransferase (ALT) and alkaline phosphatase (ALP), and nephrotoxicity (creatinine). The glucose 307 



levels remained unchanged. In addition, these compounds did not promote hematological toxicity in 308 

white blood cells counts and hematocrit when compared to vehicle-treated mice. These results are 309 

encouraging since TMZ promotes toxicity through the significant reduction in the number of circulating 310 

immune cells and increases in the levels of enzyme markers for hepatotoxicity and nephrotoxicity [50]. 311 

Table 5. Serum and blood markers of toxicity at the end of treatments in glioma bearing mice.  312 

Parameters 
Concentration ± SD 

Untreated 4e 4m 4n 

ALT (U/L) 7.6 ± 4.2 19.8 ± 18.6 6.2 ± 3.5 9.9 ± 4.4 

ALP (U/L) 19.1 ± 8.9 22.2 ± 8.7 20.3 ± 7.8 20.6 ± 6.1 

Creatinine (mg/dL) 0.4 ± 0.3 0.3 ± 0.2 0.4 ± 0.1 0.5 ± 0.4 

Glucose (mg/dL) 108 ± 13 94 ± 14 108 ± 16 109 ± 15 

WBC (x103/µL) 8.6 ± 1.6 9.5 ± 1.3 8.4 ± 2.5 9.2 ± 2.6 

Hematocrit (%) 44.5 ± 1.8 45.5 ± 2.3 46.0 ± 2.5 45.3 ± 2.9 

ALT: alanine aminotransferase; ALP: alkaline phosphatase; WBC: white blood cells. 313 

3. Conclusions 314 

We have developed robust machine learning models for the identification of new compounds able to 315 

penetrate BBB and active glioma cells. The ML models were applied for virtual screening of our in-316 

house database of compounds.  As a result, forty-one potential anti-glioma hits were prioritized and 317 

tested in vitro against three glioma cell lines and astrocytes. Among them, compounds 4e, 4m, and 4n 318 

were the best candidates from the chalcone series, presenting high potency at submicromolar range 319 

(EC50 of 1.4–6.8 µM) and moderate cytotoxicity against astrocytes. Then, SAR rules revealed that 320 

compounds containing halogen atom and methyl group in R1 position or aliphatic six-member rings and 321 

hydrophobic groups with primary to tertiary carbons in R2; and containing 5-nitrofuran ring in R3 322 

position were the most potent. Enzymatic assays indicated that inhibition of TrxR may be at least one of 323 

the biological targets of 5-nitrofuran chalcones. In addition, orthogonal in vitro assays excluded the 324 



possible promiscuous colloidal aggregate and alkylating effect of test compounds, indicating that the 325 

cytotoxic effect of the hit compounds is not related to promiscuous assay-interference. Subsequently, we 326 

confirmed the in vivo anti-cancer effects of resynthesized compounds (4e, 4m, and 4n) using mice 327 

orthotopic glioma model. The treatment of mice with 4m and 4n efficiently decreased glioma growth 328 

without promoting body weight reduction, death of animals, or altering hematological and toxicological 329 

markers. To summarize, the machine learning models developed in this study allowed us to discover two 330 

new lead compounds, which are new chemical scaffolds for developing novel anti-glioma drug 331 

candidates. 332 

4. Experimental section 333 

4.1.  Computational 334 

4.1.1. Datasets 335 

In this study, a dataset of compounds containing bioactivity data for C6 cell line was extracted from 336 

ChEMBL database (https://www.ebi.ac.uk/chembl/; ID: CHEMBL614657) [28], while a dataset of 337 

compounds with BBB penetration data was selected from a number of publications [29–32]. A brief 338 

description of the datasets is presented below. 339 

• C6 dataset: 376 compounds with EC50 data. Based on a threshold of 10 µM, it consisted of 144 340 

active compounds (EC50 ≤ 10 µM) and 232 inactive compounds (EC50 > 10 µM); 341 

• BBB dataset: 2,053 compounds with LogBB data. Based on a threshold of −1, it consisted of 342 

1,570 BBB+ compounds (if LogBB ≥ −1: penetrate) and 483 BBB− compounds (if LogBB < −1: 343 

not penetrate). 344 

4.1.2. Data Curation 345 

All chemical structures and correspondent biological information were carefully standardized using 346 

Standardizer v.16.9.5.0 (ChemAxon, Budapest, Hungary, http://www.chemaxon.com) according to the 347 

protocols proposed by Fourches and colleagues [51–53]. Briefly, specific chemotypes such as nitro 348 



groups and aromatic rings were normalized. In addition, explicit hydrogens were added, whereas 349 

organometallic compounds, mixtures, polymers, and salts were removed. Then, we performed the 350 

analysis and exclusion of duplicates as follows: (i) if the reported outcomes of the duplicates were the 351 

same (e.g. active vs active, inactive vs inactive, etc.), one entry would be retained in the dataset and the 352 

other excluded; and (ii ) if duplicates presented discordance in biological activity (e.g. active vs inactive, 353 

BBB+ vs BBB-), both entries would be excluded. Consequently, 81 duplicates within the C6 dataset and 354 

102 duplicates within the BBB were identified and removed from original datasets. Furthermore, a high 355 

concordance was observed between duplicate records of C6 dataset (82.7%), and BBB dataset (85.3%), 356 

revealing the high quality of these datasets.  357 

4.1.3. Dataset Balancing and chemical space analysis 358 

The  curated datasets (C6: 97 actives and 173 inactives; BBB: 433 BBB− and 1436 BBB+ 359 

compounds) were balanced using a linear under-sampling approach [33]. The linear under-sampling 360 

strategy calculates the Euclidean distances between each compound in majority class and whole set of 361 

minority class are measured using k-nearest neighbor (k-NN) algorithm [54]. Then, the samples on 362 

majority classes of C6 and BBB datasets were linearly extracted over the whole set by using k-distances 363 

and used to generate balanced datasets (Supplementary Files S1 and S2, respectively). Finally, a 364 

chemical space analysis of balanced datasets was generated combining PCA and MACCS keys and 365 

employing the KNIME workspace v.3.2 [55,56]. 366 

4.1.4. Molecular fingerprints 367 

Morgan and FeatMorgan fingerprints were calculated in the open-source cheminformatics software 368 

RDKit (http://www.rdkit.org [57]) executed on Python v.3.6 (https://www.python.org) [58]. Both 369 

fingerprints were generated with radius 2−4 and bit vector of 2,048 bits. Morgan and FeatMorgan are 370 

circular fingerprints built by applying the Morgan algorithm to a set of user-supplied 2D chemical 371 

structures [59,60]. The fingerprint generation process systematically records the neighborhood of each 372 

non-hydrogen atom into multiple circular layers up to a stablished radius. The Morgan captures highly 373 



specific atomic information enabling the representation of a large set of precisely defined structural 374 

features [59], whereas FeatMorgan uses functional features (i.e., hydrogen-bond donor and acceptors, 375 

aromatic, halogen, basic and acid groups) [61]. Subsequently, these atom-centered substructural features 376 

are interpreted as indexes of bits in a huge virtual bit string. Each position in this bit string accounts for 377 

the presence or absence of a specific fragment feature [59,60]. 378 

4.1.5. Machine learning models 379 

ML models were developed using Random Forest algorithm implemented in Scikit-learn v.0.19.2 380 

(http://scikit-learn.org/) package available on Python v.3.6. The grid search was done using 50−500 381 

estimators (intervals of 25 trees), number of features (Morgan or FeatMorgan bits) ranging from 6.6% to 382 

100% along the bit vector of 2,048 bits (Morgan and FeatMorgan). The Cohen’s kappa (κ) was used as 383 

scoring function of the estimator. 384 

4.1.6. 5-fold external cross-validation (5FECV) 385 

The full dataset of compounds was randomly divided into five subsets of equal size; then one of these 386 

subsets (20% of all compounds) is set aside as an external validation set and the remaining four sets 387 

together form the training set (80% of the full set). Models were built using the training set while the 388 

compounds in momentary external set (fold) were employed to evaluation of predictive performance. 389 

ML models were developed five times, allowing each of the five subsets to be used as a momentary 390 

external validation set. 391 

4.1.7. Performance of ML models 392 

The predictive performance of ML models was evaluated using SE, SP, CCR, PPV, NPV and κ. 393 

These metrics were calculated as follows: 394 

SE = 	
TP

TP + FN
																																		(1) 

SP = 	
TN

TN + FP
																																		(2) 



CCR = 	
SE + SP

2
																																	(3) 

PPV = 	
TP

TP + FP
																																(4) 

NPV =	
TN

TN + FN
																															(5) 

Here, TP and TN represent the number of true positives and true negatives, respectively, while FP and 395 

FN represent the number of false positives and false negatives, respectively. Statistical parameters 396 

higher than 0.65 denote that model is predictive. 397 

In addition to the above model evaluation metrics, κ was used to measure the agreement between 398 

model predictions and experimental data [62]. This statistical parameter is calculated by the following 399 

equations: 400 

Pr(�) = 	
TP + TN

N
																														(6) 

Pr	(e) = 	
(TP + FP)	x	(TP + FN) +	(TN + FN)	x	(TN + FP)

N
						(7) 

κ	 = 	
Pr(�)− 	Pr	(�)

1 − Pr	(�)
																									(8) 

Here, Pr(a) represents the relative observed agreement between the predicted classification of the model 401 

and the known classification, and Pr(e) is the hypothetical probability of chance agreement. In the end, κ 402 

analysis returns values between −1.0 (no agreement) and 1.0 (complete agreement), but values between 403 

0.60 and 1.0 denote that the model is predictive. 404 

4.1.8. Applicability domain  405 

The AD was estimated as a distance threshold (DT) between a compound under prediction and the 406 

closest nearest neighbors in training set. The following equation was used for calculation of distance 407 

threshold [63]: 408 

D� =	y! + Zσ																																	(9) 

In which ӯ is the average Euclidean distance of the k nearest neighbors within the modeling set, σ is the 409 

standard deviation of these Euclidean distances, and Z is an arbitrary parameter to control the 410 



significance level. We set the default value of this parameter Z at 0.5. If the compound distance 411 

exceeded the threshold, the prediction was considered to be less trustworthy [64]. 412 

4.1.9. Virtual screening 413 

Developed ML models were used for VS of an in-house library of compounds aiming to identify new 414 

potential anti-glioma compounds, which could be potentially penetrate BBB. Initially, compounds had 415 

their antiproliferative activity and BBB penetration ability predicted by our ML models. Subsequently, 416 

compounds were filtered using a aggregator advisor tool to identify molecules that are known-to 417 

aggregate in experimental assays [38,39]. Finally, pairwise Tanimoto coefficients between virtual hits 418 

were calculated to select a subset of structurally diverse virtual hits. The selected virtual hits were them 419 

proceed to in vitro experimental evaluation. 420 

4.2. Cell experiments and chemistry 421 

4.3. Reagents 422 

TMZ, propidium iodide, DMEM medium, BSA, dimethyl sulfoxide (DMSO), SRB, DTNB, NAC, 423 

1X antibiotic/antimycotic solution, TrxR assay kit, Au, Triton X-100, and Tween-80 were purchased 424 

from Sigma-Aldrich (St. Louis, MO, USA). 425 

4.3.1. Cell cultures 426 

The C6, U87MG and U251MG cell lines were obtained from American Type Culture Collection 427 

(ATCC; Rockville, Maryland, USA); GL261 cells were kindly provided by Dr. Braganhol (Universidade 428 

Federal de Ciências da Saúde de Porto Alegre, RS, Brazil). Cell lines were used to a maximum of 30 429 

passages. The cells were grown in DMEM supplemented with 10% fetal bovine serum plus 1X 430 

antibiotic/antimycotic solution (Sigma-Aldrich) in a humidified incubator at 37 ºC. Glioma cells were 431 

treated at a 40-50% confluence. Primary astrocytes were isolated from cortex of 2-days old Wistar rats 432 

by mechanical dissociation with Ca+2/Mg+2 – free Hank’s balanced salt solution and plated in Poly-L-433 

Lysine-coated 96-well plates. Astrocytes were maintained in high-glucose DMEM plus antibiotics in a 434 



humidified incubator, and treated after reaching a 90% confluence (12-15 days) [65]. The test 435 

compounds were dissolved in DMSO at 50 to 100 mM concentrations in order to achieve a maximum 436 

0.1% DMSO final concentration in the cell cultures.  437 

4.3.2. In vitro antiproliferative activity 438 

SRB assays were performed to screen cytotoxicity of the test compounds identified herein. Briefly, 439 

glioma cells and astrocytes were plated onto 96-well plates, treated with test drugs in the 0.1 to 100 uM 440 

range for 72 h. Afterwards the cells were fixed with 100 µL of ice-cold 40% trichloroacetic acid for 1 h 441 

at 4°C. Plates were then washed five times with cold water and left to dry. SRB solution (50 µL; 0.4% 442 

SRB in 1% acetic acid) was added to each well and incubated for 30 min. The cells were then washed 4 443 

times with 1% acetic acid and air dried. Then, 100 µL of 10 mM Tris-base at pH 10.5 was added to each 444 

well to solubilize the dye. The plates were gently shaken for 20 min and the absorbance was read at 510 445 

nm in a microplate reader. Cell numbers were calculated as the percentage absorbance (% cell 446 

proliferation) compared to the absorbance of vehicle treated (DMSO) controls. In some assays, NAC (2 447 

mM) pretreatments were performed for 1 h prior to test compounds incubation.  448 

4.3.3. Controls for nonspecific inhibition  449 

Aggregation-based cytotoxicity were evaluated in C6 cells incubated with test compounds in culture 450 

medium containing no detergent versus 0.0001%, 0.001% and 0.01% Triton X-100. SBR assays were 451 

carried out after 72 h incubation.  The fundamental concept is that increasing the amount of detergent 452 

will increase the EC50 value of an aggregator, and will have no effect on a reversible/competitive 453 

inhibitor [66]. For evaluation of alkylating effect of test compounds with cysteine residues, NAC (100 454 

and 500 µM) was incubated with test compounds ranging from 10 to 500 µM concentrations in 10 mM 455 

phosphate buffered saline (pH 7.4) for 2 h at 37 C in the dark. In addition, we incubated test compounds 456 

with BSA (10 µg/mL) at the same conditions above described [67]. At the end of incubations, reduced 457 

thiol residues in NAC and BSA were determined by reaction with DTNB in the presence of boric acid 458 

buffer (100 mM boric acid, 0.2 mM EDTA, pH 8.5) for 1 h at room temperature, and then read at 412 459 



nm [68]. The thiol-alkylating agent NEM was used as a positive control for thiol alkylation/depletion. 460 

Data are expressed as % R-SH compared to control group (NAC or BSA alone).  461 

 462 

4.3.4. Thioredoxin reductase assay 463 

The reducing activity of TrxR (Sigma T9698) on 5,5’-Dithiobis-(2-nitrobenzoic acid) (DTNB, Sigma 464 

D8130) was performed on 96-well microplates with a final volume of 100 µL at 37 °C. The reaction 465 

medium contained 100 mM potassium phosphate buffer, pH 7.0; 0.2 mg.mL-1 of NADPH, 2 mg.mL-1 of 466 

DTNB. The amount of TrxR used in the assay was 0.01 mg.mL-1. The FlexStation 3 multi-mode plate 467 

reader (Molecular Devices, CA) was used. The activity was measured following the appearance of 5-468 

thio-2-nitrobenzoic acid (TNB) having an absorbance peak at the wavelength of 412 nm and a molar 469 

extinction coefficient of 13.6 mM-1.cm-1 [68]. Before starting the reaction reading, the TrxR was 470 

incubated for 15 minutes with the test compounds, including auranofin (positive control) at 100 µM or 471 

DMSO, used as negative control. The reaction was started with the addition of NADPH. The assays 472 

were performed in duplicate and in the absence of the enzyme to discount the contribution of the 473 

spontaneous reaction between the substrates. The compounds showing more than 50% of inhibition were 474 

further analyzed and had their IC50 determined using height dilution series (1 µM – 1000 µM). 475 

4.3.5. Chemical synthesis 476 

Microwave synthesis was performed in microwave Anton Paar, Monowave 300 model. The progress 477 

of all reactions was monitored on Silicycle 60 F-254 silica gel plates 0.25 mm using ethyl acetate/n-478 

hexane (v/v) as eluent system. Spots were visualized by irradiation with ultraviolet light (254 nm) or 479 

with sulfuric vanillin solution or ninhydrin solution followed by heating. Melting points were 480 

determined using Fisatom digital. 1H and 13C NMR spectra were recorded on Bruker of 11.74 Tesla 481 

spectrometer at 400,13 or 500,13 MHz for 1H and 125,76 MHz for 13C with spectral large of 10.0 ppm 482 

for 1H and 240 ppm for 13C using CDCl3 as solvent and reference. Chemical shifts are given in parts per 483 

million (ppm) (δ relative to residual solvent peak for 1H and 13C). Spectra mass was performed on a 484 



Compact Bruker in LCMS-2020. IR spectra were recorded on a Nicolet 6700-FTIR Thermo Scientific 485 

model (medium, sweep of 4000 to 400 cm-1). 486 

4.3.5.1.  (2E)-1-(4-butylphenyl)-3-(5-nitrofuran-2-yl)prop-2-en-1-one (4e) 487 

Brown solid; yield 79% (807.7 mg, 2.70 mmol); melting point 90º C). 1H NMR (CDCl3, 500 MHz): δ 488 

= 7.98 (d, 2H,  J = 8.2 Hz), 7.76 (d, 1H, J = 15.4 Hz), 7.54 (d, 1H, J = 15.4 Hz), 7.37 (d, 1H, J = 3.7 489 

Hz), 7.33 (d, 2H, J = 8.2 Hz), 6.83 (d, 1H, J = 3.7 Hz), 2.7 (t, 2H, J = 7.7 Hz), 1.6 (q, 2H, J = 7.4 Hz; 7,7 490 

Hz), 1.3 (s, 2H, J = 7.4Hz), 0,9 (t, 3H, J = 7.4 Hz); 13C NMR (CDCl3, 125 MHz): δ = 188.1, 153.2, 491 

149.63, 134.8, 128.9, 128.8, 127.7, 125.2, 116.3, 113.2, 35.7, 33.2, 22.3, 13.9; IR (neat): 3393, 2974, 492 

1777, 1021, 777, 570, 470 cm-1; HRMS-ESI (m/z): calcd for C17H17NO4[M+H]+: 299.1158, found: 493 

300.1234. 494 

4.3.5.2.  (2E)-1-(3-methylphenyl)-3-(5-nitrofuran-2-yl)prop-2-en-1-one (4m) 495 

 Brown solid; yield 84% (430.8mg, 1.67 mmol); melting point 144º C. 1H NMR (CDCl3, 400 MHz): 496 

δ = 7.86 (d, 2H, J = 6.9 Hz), 7.76 (d, 1H, J = 15.5 Hz), 7.54 (d, 1H, J = 15.5 Hz), 7.4 (d, 2H, J = 7.6 Hz), 497 

7.38 (d, 1H, J = 3.8 Hz), 6.84 (d, 1H J = 3.8 Hz), 2.46 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ = 188.8, 498 

153.2, 138.8, 137.2, 134.4, 129.1, 128.7, 127.9, 125.9, 125.2, 116.3, 113.1, 21.3; IR (neat): 3393, 2974, 499 

1777, 1021, 777, 570, 470 cm-1; HRMS-ESI (m/z): calcd for C14H11NO4[M+H]+: 257.0688, found: 500 

258.0764. 501 

4.3.5.3.  (2E)-1-(3-bromophenyl)-3-(5-nitrofuran-2-yl)prop-2-en-1-one (4n).  502 

Brown solid; yield 87% (148 mg, 0.45 mmol); melting point 146º C. 1H NMR (CDCl3, 500 MHz): δ 503 

= 8.17 (t, 1H, J = 1.7 Hz), 7.98 (d, 1H, J = 7.8 Hz), 7.75 (d, 1H, J = 7.8 Hz), 7.68 (d, 1H, J = 15.4 Hz), 504 

7.56 (d, 1H, J = 15.4 Hz), 7.42 (t, 1H, J = 7.8 Hz), 7.39 (d, 1H, J = 3.8 Hz), 6.87 (d, 1H, J = 3.8 Hz); 13C 505 

NMR (CDCl3, 125 MHz): δ = 187.3, 152.7, 138.9, 136.4, 131.6, 130.4, 128.8; IR (neat): 3393, 2974, 506 

1777, 1021, 777, 570, 470 cm-1; HRMS-ESI (m/z): calcd for C13H8BrNO4[M+H]+: 320.9637, found: 507 

321.9701. 508 

4.3.6. In vivo GL261 glioma growth experiments 509 



GL261 cell culture and tumor implantation: Animal experiments were carried out in accordance with 510 

the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines, the National Institutes of 511 

Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and 512 

institutional guidelines. Mice were obtained from our Institutional Animal Core Facility, and the animal 513 

studies were approved by Instructional Animal Care and Use Committee (IACUC, protocol nº 514 

7049120618). The animals were allowed food and water ad libitum. Orthotopic transplantation of 515 

GL261 glioma cell line in C57BL/6 mice was carried out as previously described [69,70]. GL261 cells 516 

were cultured to subconfluence, trypsinized, washed in DMEM without serum, and resuspended in 517 

serum/antibiotics-free DMEM for inoculation. Briefly, GL261 cells (5x104 in 2 µL DMEM) were 518 

injected into the right hemisphere of 60 days-old C57BL/6 mice (males and females, 17-25 g) previously 519 

anesthetized by ketamine/xylazine (90/10 mg/Kg, intraperitoneal.) using a 10 µl Hamilton microsyringe 520 

coupled with an infusion pump set at 1uL/min (coordinates to the bregma: 2.5 mm posterior, 2.5 mm 521 

lateral, and 2.3 mm depth).   522 

Pharmacological treatments and tumor volume quantification: After 7 days for tumor establishment, 523 

the animals were grouped (n=9) as follows: vehicle; 4e (10 mg/Kg and 100 mg/Kg), 4m (10 mg/Kg and 524 

100 mg/Kg), 4n (10 mg/Kg and 100 mg/Kg), and TMZ (20 mg/Kg). Test compounds were administered 525 

once a day for a total 10 days. TMZ was administrated in alternate days (protocol days 7, 9, 11, 13 and 526 

15th). Oral (200 uL/gavage) and intraperitoneal (100 uL by intraperitoneal injection) administration 527 

protocols were carried out for comparison. All test compounds were dissolved in DMSO (10% final), 528 

followed by dilution in 0.9% NaCl containing 0.3% Tween-80. Vehicle consisted of 0.9% saline 529 

containing 10% DMSO and 0.3% Tween-80. The mice were euthanized after 10 days treatment. The 530 

brain was removed, fixed with 10% paraformaldehyde and paraffin embedded. For tumor volume 531 

quantification, three H&E-stained coronal sections (5 µM thick) were prepared from each brain/animal. 532 

Images were captured and tumor area with each brain slice was estimated using the ImageJ® software. 533 

Tumor volume (mm3) was calculated by sum of the segmented areas as previously described [71]. 534 

4.3.7. Toxicological markers 535 



At the end of treatments, the animals were euthanized by ketamine/xylazine (100 mg/Kg, 536 

intraperitoneal) followed by cardiac puncture. Whole blood samples were collected in EDTA tubes, and 537 

part was harvested without anticoagulants for serum separation by centrifugation (1,300 xg, 10 min), and 538 

stored at -80 ºC.  Serum activity of alanine aminotransferase (ALT) and alkaline phosphatase (ALP), and 539 

glucose and creatinine levels were quantified by Labtest Liquiform commercial kits per manufacturer’s 540 

instructions (Labtest diagnostica, Brazil). Haemogram analyses were carried out in fresh blood samples 541 

collected in EDTA using an ABX Micros 60, HORIBA ABX Diagnostics equipment (Montpellier, 542 

France). 543 

4.3.8. Statistical analysis 544 

Data were expressed as average ± SD. Data were analyzed by One-way ANOVA followed by Tukey 545 

post-hoc test at a p<0.05 cut-off for significance (GraphPad Prism 5). 546 
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Highlights 

 

• ML models were developed to predict of anti-glioma activity and BBB penetration 

• New hits with antiproliferative activity were identified by virtual screening 

• Three hits presented high potency and moderate cytotoxicity 

• Compounds were able to inhibit TrxR enzyme 

• Two lead compounds stopped the malignant glioma in vivo without promoting toxicity 


