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ABSTRACT

Glioblastoma multiforme (GBM) is the most devastgtand widespread primary central nervous
system tumor. Pharmacological treatment of thisgnahce is limited by the selective permeability
of the blood-brain barrier (BBB) and relies on g drug, temozolomide (TMZ), thus making the
discovery of new compounds challenging and urg@&herefore, aiming to discover new anti-
glioma drugs, we developed robust machine learmingdels for predicting anti-glioma activity and
BBB penetration ability of new compounds. Usingsthenodels, we prioritized 41 compounds from
our in-house library of compounds, for furtharvitro testing against three glioma cell lines and
astrocytes. Subsequently, the most potent andisel@ompounds were resynthesized and tasted
vivo using an orthotopic glioma model. This approacreated two lead candidate$m and4n,
which efficiently decreased malignant glioma depebent in mice, probably by inhibiting
thioredoxin reductase activity, as shown by ouryeraogical assays. Moreover, these two
compounds did not promote body weight reductiomtld®f animals, or altered hematological and
toxicological markers, making then good candiddtaslead optimization as anti-glioma drug

candidates.

Keywords: Cancer; glioblastoma; machine learninggdjetive modeling; orthotopic glioma model;

thioredoxin reductase.



51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

1. Introduction

Glioblastoma multiforme (GBM) or grade IV glioma the most commonly occurring and
aggressive type of primary central nervous syst&NS) tumor [1,2]. Most of GBM occur
particularly in the brain, but they can also appeacerebellum brainstem and also in spinal cord
[3,4]. This malignance can manifest at any agejsutore frequent in adult men with a median age
of 64 years [5]. The majority symptoms of GBM indduintracranial pressure, headache and focal
or progressive neurologic deficits [5]. ConsequenB8BM prognosis remains dismal for decades
with a median overall survival of ~14 months, wihks than 10% of patients surviving beyond five
years [6,7].

GBM is particularly difficult to treat due to itharacteristic of excessive invasiveness and fast-
growing behavior, as well as its particular locatend the selective permeability offered by the
blood-brain barrier (BBB)[8,9]. At present, chemaidpy is the main postsurgical and adjuvant
therapy for GBM, and the alkylating agent temozalten(TMZ) is the first-line drug frequently
combined with radiotherapy [10]. TMZ is absorbedllyr and presents favorable toxicity profile
compared with older alkylating agents such as catimel [11]. However, the emergence of
temozolomide resistance hampers its use in GBMept#i[12,13]. Hence, the discovery of new
anti-glioma drugs is urgently needed.

In this context, quantitative machine learning (Mhas exerted profound impact on drug
discovery, making it faster and less expensive 184, ML is a growing field of artificial
intelligence that uses different statistical tecluas to enable computers to learn from various data
types without being explicitly [16]. Several ML nheids, such as Support Vector Machines [17],
Random Forest [18-20], and more recently Deep NeNeaworks [21-24], have been utilized
for drug discovery. Methodologically, ML tools usesttern recognition algorithms to discern
mathematical relationships between experimenta¢mbsions of small molecules and extrapolate
them to predict biological properties of novel camapds.[25-27] So, ML represents a helpful tool

for virtual screening (VS) of new chemicals witrsoled biological properties.
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In this work, we developed ML models and appliednthfor predicting the anti-proliferative
activity against glioma cells and the BBB penetnatability of new compounds from our in-house
library. Then, the prioritized compounds were expentally evaluatedh vitro against glioma cells

and astrocytes, and vivo using an orthotopic glioma model.

2. Results and discussion

The general study design is presented in Fig kfBriwe followed successive steps as follows:
(i) data collection, curation, and integration @ihgounds reported in the literature with activity
against C6 glioma cells and BBB penetration; (ngmical space analysis of curated datasets; (iii)
development and validation of ML models; (iv) VS ah in-house chemical database (1,250
compounds) using the ML models for prioritizatioh @mpounds; (v)in vitro experimental
validation using phenotypic and enzymatic assaysy; ¢hemical synthesis of most promising

compounds; and (viip vivo investigation using orthotopic glioma model.

Data set preparation and Chemical space analysis Machine learning Virtual screening
curation modeling

®
ool o BN o B @ S
O)‘\AU 4n

P
- =
S\ )| T

Lead compounds In vivo assays Chemical synthesis In vitro assays

Figure 1. Study design. (i) data collection, curation, antegnation of molecules with activity
against C6 glioma cells and BBB penetration; (ngmical space analysis of curated datasets; (iii)
development of binary and continuous QSAR mod&g; (S of an in-house chemical database
(containing 1,250 compounds); (W) vitro experimental validation using phenotypic and eratyen
assays; (vi) chemical synthesis of most promisiogymounds; (vii)in vivo investigation using

orthotopic glioma model, and (viii) identificatiaf novel anti-glioma leads.
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Initially, two datasets of compounds with anti-ghia (Supplementary File S1) and blood-brain
barrier (File S2) bioactivity data were retrievedri the ChEMBL database (ID: CHEMBL614657
[28]) and scientific literature [29-32], respectiueBoth datasets were submitted to a rigorous data
curation protocol. An activity threshold of 10 pMded on half maximal effective concentration
(EGs0) against C6 rat glioma cells was defined for dmoration between active and inactive
compounds. Compounds with experimental logBB gretitan or equal to -1 were labeled as
BBB+ (penetrating) and those with logBB below —1B8B- (not penetrating). Subsequently, the
C6 dataset (97 active and 173 inactive compouraths), BBB dataset (433 BBB- and 1436 BBB+

compounds) were balanced using a linear under-sagngbproach [33].

2.1.Chemical space analysis

To visualize the structural diversity of our datasewe performed a principal component
analysis (PCA, see Supplementary Figure S1). The fe@uces high-dimensional space composed
by Molecular ACCess System (MACCS) keys into a senalumber of orthogonal (non-correlated)
variables called principal components (PCs), thaking it more manageable and comprehensible
by extracting essential information [34,35]. TheAP@odel with the first two PCs described 34.8%
of total data variance. Projecting variables on ptenes defined by a PC1 and PC2 allows an
interesting chemical space analysis, in which nebshe active (green dots) and inactive (yellow
dots) compounds from Céataset overlap within the same regions of chensipate (defined by
PC1 and PC2) of BBB+ (blue dots) and BBB- (red dotsnpounds from the BBB dataset. This
analysis revealed that multiple compounds activares glioma cells can also potentially penetrate
the BBB. Based on these data, we developed preglicomputational models for both biological

properties in order to select only compounds ptedias active for C6 cells and BBB+.

2.2.Performance of ML models
ML models were built to distinguish actives. inactive compounds for C6 cell line (see

Supplementary File S1) and BBB#s. BBB— compounds (Supplementary File S2). Statistical
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characteristics of developed ML models estimatedibgid external cross-validation are reported
in Table 1. According to the statistical resultsg tcombination of Morgan and FeatMorgan
fingerprints (radius 2: FeatMorgan_2, Morgan_2;iuad4: FeatMorgan_4, Morgan_4) with
Random Forest algorithm led to predictive binary Mhodels. Briefly, correct classification rate
(CCR) values were ranging between 0.83-0.87; seitgi{SE) 0.82-0.87; specificity (SP) 0.82—
0.87; positive predictive value (PPV) 0.84-0.88yateve predictive value (NPV) 0.81-0.88; and a
Cohen’s kappax)) 0.66—0.73. The model built using Morgan_2 demastl the best performance
among all other models developed for antiprolifi@etctivity against C6 celllcCCR = 0.87; SE =
0.89; SP =0.85) and BBB (CCR = 0.85; SE = 0.8%; &R = 0.89).

Table 1. Summarized statistical characteristics of ML medel

Models CCR SE SP PPV NPV K Coverage
Glioma (C6 cell line) models
Morgan_2 0.87 0.89 0.85 0.85 0.88 0.73 0.52
Morgan_4 0.85 0.84 0.86 0.85 0.84 0.69 0.51
FeatMorgan_2 0.85 0.86 0.84 0.84 0.85 0.69 0.59
FeatMorgan_4 0.85 0.86 0.84 0.84 0.85 0.69 0.51
Blood-brain barrier (BBB) models
Morgan_2 0.85 0.81 0.89 0.88 0.82 0.70 0.59
Morgan_4 0.84 0.81 0.88 0.87 0.82 0.68 0.57
FeatMorgan_2 0.83 0.79 0.87 0.86 0.81 0.66 0.61
FeatMorgan_4 0.84 0.80 0.88 0.87 0.81 0.67 0.57

CCR: correct classification rate; SE: sensitiviBP: specificity; PPV: positive predictive value;daNPV: negative

predictive valuek: Cohen’s kappa; Coverage: percentage of tesosepaunds within the applicability domain.

2.3. Virtual screening

The virtual screening (VS) was carried out follog/the workflow presented in Figure 2.
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1,250 compounds

Machine learning
model (C6 cells)

82 compounds

Machine learning
model (BBB)

60 compounds

Colloidal aggregation
filter

52 compounds

Chemical similarity
analysis

12 compounds

Figure 2. Virtual screening workflow used for identifying weanti-glioma hits. Colloidal
aggregation tool was used to filter out moleculest tare known to aggregate in experimental
assays,; chemical similarity analysis and visuapéasion were performed to select a subset of

structurally diverse virtual hits.

Initially, 1,250 structurally diverse compounds r{#hyesized or purchased) available in our in-
house database were compiled and standardizedSoiTken, the best ML models developed for
C6 and BBB were used to prioritize potential atithga compounds. The final selection of hits can
be summarized as follows: (i) the compounds predieis active and BBB+ by the ML models; and
(i) compounds inside the applicability domain (A@f)the ML models. The AD was determined in
order to set “reliable” and “unreliable” predict®{B86,37]. The predictions were considered reliable
when the virtual hits are within the chemical spatehe molecules used for training models.
Subsequently, a colloidal aggregation tool was usedilter out molecules that are known to
aggregate in experimental assays [38,39]. Finally,performed a chemical similarity analysis to
select a subset of structurally diverse virtuas.hit the end of this process, twelve putative hits

with model probability >0.65 (Table 2) were selekcter biological evaluation.

2.4.1n vitro antiproliferative activity
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The twelve prioritized hits were primarily evaluatan vitro against three glioma cell lines
(Table 2). The E& values (see Table 2) indicated that three compmurd[(E)-2-(2-
nitrophenyl)ethenyl]quinolin-8-yl  propanoate 1)( (2E)-1-[4-(morpholin-4-yl)phenyl]-3-(5-
nitrofuran-2-yl)prop-2-en-1-onel), and (2E)-1-[4-(1H-imidazol-1-yl)phenyl]-3-(5-nithiophen-2-
yhprop-2-en-1-one §) were potent at inhibiting the cell growth, showinactivities in

submicromolar range against C6, U251MG, and U87MlI&.c



158  Table 2. ML probability of selected virtual screening hiis,vitro activity against glioma cell lines (C6, U251MG ad87MG), cytotoxicity on

159  astrocytes and selectivity index.

ML
ECso (UM) + SD Selectivity indeX
ID Chemical structure Probability
C6 BBB C6 U251MG U87MG  Astrocytes C6 U251MG U87MG
1 0.76 0.67 6.3+£0.8 10.1+2.2 105%238 55.2% 5 8.7 54 5.3
2 0.81 0.94 >50 >50 - - - - -
3 0.82 0.94 >50 >50 - - - - -
/ﬁ 0\\N‘-—O’
4 K/N 7N 0.88 0.96 6.6£21 37.8+3.6 9.8+£29 75.85 8. 11.5 2 7.7
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160  “Data retrieved from reference [48Belectivity index calculated by astrocyte &g/Glioma cell line EG,; The data are expressed as mean * SD of thrependent assays.

161 Dashed Sl values means that cytotoxicity againsb@ges cannot be calculated because compoundstighow activity even at highest concentratioseduin the assay.
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Since heteroaryl chalconds(EGCsp = 6.6 pM and 9.8 uM for C6 and U87MG, respectiyely
and5 (EGsp = 1.9 uM, 9.4 uM and 10.1 uM for C6, U251MG and/W&5, respectively) were
the most promising anti-glioma hits in experimerdakays, a new round of biological assays

were performed with 29 structural analogs availanlén-house database (Table 3).



167  Table 3.In vitro cytotoxicity of heteroaryl chalcones against gleooell lines (C6, U251MG, and U87MG) and primary@sytes, and thioredoxin

168  reductase activity.

o A e A e L 6= CL
I
[o]

R1
Z “R3
o
R2 0 H
Iil/

ML

Chemical structure ECso (M) £ SD TrxR*? Selectivity indexX

ID probability
(%)

R1 R2 R3 C6é BBB C6 U251MG UB7MG  Astrocytes C6 UaMG UB7MG
4a H Br A 0.85 0.97 2711 21.4+4.4 126+3.4854+t7.4 - 31.6 3.9 6.7
4b H | A 0.86 0.97 2.1+£0.7 125+4.1 52127 .58 5.2 - 325 54 13.1
4c H SChH A 0.85 091 16x1.1 142 +3.3 39+1.7 2836 56.4 17.7 2 7.3
4d H C(CHg)s A 0.84 0.88 28.6 £5.7 445 +6.3 - - - - - -
4e H (CHy):CH; A 0.65 0.96 1.7£0.8 3.9+21 58+1.6 412.8 80.7 24.2 10.6 7.1

N
4 H [» A 0.86 0.97 3.5+1.2 22.6+25 13.4+2.9 4584 - 12.9 2 3.4
N
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4h

4i

4

4k

41

4n

53.

0.86

0.76

0.80

0.87

0.73

0.92

0.81

0.81

0.84

0.92

0.98

0.96

0.96

0.97

0.94

0.87

0.96

0.97

0.97

0.87

16.4+5.1

17.7+45

51+16

48.7 + 6.6

15+01

6.6+21

21+05

1.4+0.9

30.5+6.8

7.8+3.1

35.9+3.3

246+4.4

44+15

>50

16.7+6.4

37.8+3.6

2.3+0.3

58+1.3

47.1+6.2

23.3+34

35477

9.5+33

49+22

9.8+29

3.3+0.8

6.8+24

19.2+35

6bRB7

57225

4482

758%

52428

B53.2

>100

95.2

78.7

11.2

29.5

11.5

24.8

25.4

1.8

13

2.6

22.7

6.1

1.8

7.7

15.8

52
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0.90

0.89

0.68

0.87

0.92

0.92

0.84

0.83

0.87

0.86

0.84

0.79

0.90

0.88

0.87

0.98

0.99

0.87

0.94

0.93

144+5.1

18.5+ 4.1

84+21

>50

23.6+4.1

145+33

36.6+4.4

>50

223+5.1

146 +35

24 +5.6

16.4+5.1

6.4+3.3

26.4+3.9

>50

351+51

>50

>50

32.1+4.2

214+3.1

45.1+£5.2

32.3+4.3

12.3+35

13.4+3.1

>100

>6.8

>4.7

>7.5
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16 H

()
17 H O G 091 0.94 >50 >50 - - - - - -
N

F 0.88 0.94 325+5.2 20.3+3.6 - - - - - -

18 H H 0.86 0.95 495 +6.7 >50 - - - - - -

3Percent of inhibition of thioredoxin reductase wtyiat 100 uM:"Selectivity index calculated by astrocyte &g6lioma lineage EG; The data are expressed as mean + SD of
three independent assays. Dashed Sl values meansytbtoxicity against astrocytes cannot be cated because compounds did not show significamttayitity even at

highest concentrations used in the assay.
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The most promising compound was the nitrofuran@n&E)-1-(3-methylphenyl)-3-(5-nitrofuran-2-
yl)prop-2-en-1-one4m) with EG5 of 2.1 uM, 2.3 uM and 3.3 pM for C6, U251MG and/W85 cells,
respectively. The compounds, 4e, 4n, and4k were the most active against C6 cells {£€1.5), but
lost activity against U251MG and U87MG cells in qmamson to4m. The positive control TMZ had
activity against C6 cells with an Bgvalue of 60.46 uM, and showed minimal activityd@51MG and
U87MG cells at 200 uM [40], probably because TMAuiees a slightly basic pH to spontaneously
converts to a bioactive methylating agent [41]. €niration-response curves used forsEC
determination ofle, 4m, and4n are shown in Figure 3A. Considering the lipoplt§yi¢LogP calculate
~3.6 fordm and 4, and 4.8 fode) of test compounds, we performed cytotoxicity @avn C6 cells in
the presence of varying Triton X-100 concentrati(th801%, and 0.0001%). At 72 h treatmeld, 4m
and 4n cytotoxicity (EGg was similar to C6 cells without detergent theredxcluding a possible
promiscuous colloidal aggregate effect (Figure @B)well as indicating that cytotoxicity of the hit
compounds is related to specific inhibition. Inisteworthy that Triton-X100 0.01% killed all C6 Isgl

thus making the E£ estimation unfeasible at this concentration (datashown).



A. 125+ ceé 1251 U251MG

5 100 & 100
s & 4de T - 4e
£ 75 = 4m £ 754 = 4m
o [=]
= —- 4n = —— 4n
2 50 2 5
Q [
O O
£ 254 £ 254
* g P
01— T T T J O0-t— T T ; .
0.1 1 10 100 1000 0.1 1 10 100 1000
Concentration (uM) Concentration (pM)
Us7MG 125+ Astrocytes
5 S
& > de 8
2 = 4m £
g —&— 4n g
£ 254 N x % L 254
*
C T T T T 1 C T T T 1}
B. 0.1 1 10 100 1000 0.1 1 10 100 1000
Concentration (uM) Concentration (uM)
1251 Cé 1254 125+ C6
5 100+ frmrnrrermrms e e 100 ===+ Em sz s mrmmnnmmsmnssnsrnnnnansaaaansnanens 100 === rzzsrnmnnnnsssrennmmmnnssnssennnanssnssnnns.
©
2 75 75+ 75+
9
%‘ o8 OSSR (S — o8 USRS — 108 S, S
cg - +Triton 0% -©- +Triton 0% -& +Triton 0%
® 25{ _a +Triton 0.001% 251 A +Triton 0.001% 251 A +Triton 0.001%
- +Triton 0.0001% - +Triton 0.0001% ko - +Triton 0.0001%
o T T i o T T 0 T T
0.1 1 10 0.1 1 10 0.1 1 10
4e (LM) 4m (uM) 4n (M)

187

188  Figure 3. (A) Viability concentration-responses curves for commuside 4m, and4n against C6,

189 U251MG, UB7MG, and astrocytes after 48h of incudrati(B) Concentration-response curves for test
190 compounds in the presence of Triton X-100 in C&sg@l2 h treatment, sulforhodamine B (SRB) assay).
191 The data are expressed as mean = SD of three indepeassays. * Different from untreated cells

192 (p<0.05, ANOVA).

193  2.5.In vitro Cytotoxicity assays in astrocytes

194 The hit compounds were also evaluated for theiotoyicity in vitro against astrocytes, as a control
195 for normal glial cells. These compounds demongairat@dest to moderate cytotoxicity on this assay
196 (see Table 3 and Figure 3), with selectivity index8l) ranging between 1.8 and 32.5. The compound
197  4m showed the most promising cytotoxicity profilethwEI of 24.8, 22.7 and 15.8 for C6, U251MG and

198  UB7MG cells, respectively.
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2.6.Inhibition of thioredoxin reductase (TrxR) activapd involvement in thiol homeostasis

Since 5-nitrofuran chalcones display potent anbifen@ative activities, we then asked the possible
cellular target of these in glioma cells. Chalcomesitain ana,p-unsaturated ketone moiety, a key
structure for many reported TrxR inhibitors [42,43Tonsidering this key feature, we made
computational predictions with these molecules gidimary ML models developed in-house for TrxR
(data not shown). As a result, all investigated poumds were predicted as inhibitors this enzyme. |
view of this, the most promising compounds wergetes vitro against TrxR. As shown in Table 3,
compounddm showed the greatest TrxR inhibitory activity (9.2t 100 uM), followed bye (80.7%)
and4n (78.7%). In addition, compound® and4m showed dose-dependent decrease of TrxR activity,
with 1C5p values ~25 pM.

Compounds witha,f-unsaturated carbonyl system (i.e. chalcones) Hazeen reported to form
covalent bonds with cysteines [44]. Consequentifjzas been suggested that chalcones are pan-assay
interference compounds (PAINS) [45] due to reattiunder assay conditions. In order to evaluate the
role of thiol residues idn, 4m and4e cytotoxicity, we pre-incubated C6 glioma cellstwi2 mM N-
acetyl-cysteine (NAC) for 1 h prior to test compdsntreatments. The classical TrxR inhibitor,
auranofin (Au), was used as a positive controll @iability assays showed that NAC abrogated the
cytotoxicity of our test compounds as well as aafen(Fig. 4A). Using a cell-fre@ vitro system, we
observed thadn, 4m and4e (10 to 500 uM) were not alkylating agents in pregeaf NAC and bovine
serum albumin (BSA) at physiological conditions (gH, 37 °C) (Figures 4B and 4C). The alkylating
agent N-ethylmaleimide (NEM) was used as a positvetrol for cysteine alkylation, leading to thiol
depletion (R-SH) at 50 uM (Figs. 4B and 4C). Thessults indicate thatn, 4m and4e are PAINS
even though thiol homeostasis and inhibition ofRimnay play a role, at least in part, in 5-nitrofura

chalcones cytotoxicity.
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Figure 4. (A) Effect of NAC pretreatment (2 mM, 2 h) on 4k, 4n and auranofin (Au) cytotoxicity in
C6 glioma cells incubated for 72 h as assessedRB/ &say. (B-C)n vitro reactivity of 4e, 4m and 4n
with reduced thiol residues (R-SH) of NAC and B3$¥ckell-free assay as determined by 5,5'-dithiobis-
2-nitrobenzoic acid (DTNB) assay. In B and C, theltalkylating agent NEM was used as a positive
control for thiol alkylation/depletion. *differeritom untreated cells or control group (NAC or albom
alone, in B and C graphs); #different from untrdassd test compound-treated cells at equivalent

concentrations (1-way ANOVA, post-hoc Tukey; p<0.05

2.7. Structure-activity relationships (SAR)

Based on the experimental results, we derived tstret@ctivity relationships (SAR) rules to reveal
the molecular substituents favorable and unfaverédyl anti-glioma activity (Figure 5). The infornat
revealed by the SAR allowed us to derive the follmyrules: (i) halogen atom and methyl in R1
position increases the activity; (ii) aliphatic snember rings and hydrophobic groups with primary t
tertiary carbons in R2 position increases the #gfiyiii) 5-nitrofuran ring in R3 position increas the

activity; (iv) aromatic rings or hydrophobic groupgh quaternary carbons in R2 position decreases t



238  activity; (v) 5-nitrothiophene, furan, 5-chlorotipioene, and six-member aromatic rings in the R3

239  position decreases the activity in glioma cells.

Halogen or methyl
0]

............. 5-nitrothiophene
: 5-chlorothiphene
L

rings

241  Figure 5. Derived SAR rules for chalcones with antiprolifera activity against glioma cells.

240

242  Substituents inside green boxes increase the @ctivhereas substituents in red boxes decrease the

243  activity.

244  2.8.Synthesis of lead candidates

245 The most promising hit compounds (i.ée 4m, and4n) identified in antiproliferative assay were
246  selected foin vivotesting. Considering the insufficient amount of pmund mass fan vivo assays, we
247  resynthesized them again in larger scale using@taSchmidt condensation using acetic acid assolve
248 and sulfuric acid (F5Qy) as a catalyst [46]. For the resynthesis of ddsitealcones in large quantities
249  required forin vivo testing it was necessary an optimization study mmprovement of the yields
250 obtained in the methodology previously describedDy Andrade’s research group. Gomes and co-
251  workers [46] reported on previous study that stash@@ndition under basic medium could not be used
252  because the starting materials are alkali-sensifilies, the resynthesis of our test chalcones waged

253  out in acidic medium (Table 4). Table 4 lists th@imized conditions employed for the resynthesis of
254  4n, under reflux at 100 °C, reduced evaporate pres@s previously reported), isolation with cooled
255  water, HSO, catalyst reduced, and microwave.

256  Table 4.Claisen-Schmidt condensation under different coomkt
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Entry Method* Yield (%) Reaction time (h)
1 Reflux + reduced evaporate pressure 31% 30
2 Reflux + isolation with cooled water 87% 20
3 Reflux + 0.5 HSQ, catalyst 56 % 30
4 Microwave 37 % 02

*Conditions we employed for the resynthesis of compu 4n.

The protocol used in entry 1 was used in the presiwork where after consumption of all starting
materials (monitored by TLC), the reaction mixtiseconcentrated under reduced pressure to remove
the acetic acid, thus obtaining the desired chacdhe problem encountered with the increase ilesca
is that a drastic decrease in yield is observeaume of the higher amount of sulfuric acid causiveg
degradation of the formed product. As we may ndtioen Table 4, under reflux at 100 °C and pressure
reduced the reaction pathways had other disadvesifagside low yield (31%), the long reaction time
(30h) Under microwave irradiation (entry 4), theaton time decreased substantially (2h), but yield
(37%) remained similar. Also explained by the pnegeof the acid medium is observed a large amount
of degradation of material. The reduction of theoant of sulfuric acid (entry 3) was not satisfagtor
because there was no total consumption of thargjartaterials with the same reaction time as theyen
1. The protocol used in entry 2 was the better aghdiad the higher yield (87%), where after
consumption of all starting materials (monitoredTiyC), the reaction mixture was poured into cooled
water, precipitating the desired chalcone. Takintp iconsideration the aspects mentioned above,

especially those related to yield, we decided terek the protocol entry 2 fdeand4m resynthesis.

2.9. In vivo anti-glioma activity
Many priorin vitro studies have found potential candidates to triéatn@s, but most of them did not

include animal testing or failed inn vivo studies. In addition, most of prior studies use
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immunocompromised mice [47] and subcutaneous xaffisg#8,49], which lack important components
of tumor microenvironment and blood barrier resioits, respectively. In this study, we confirmed th
in vivo anti-glioma effects of resynthesized compouris 4m, and4n) using a very aggressive model
of glioma in immunocompetent mice orthotopically pianted. The overall design of the study,
treatment groups, route of injection, and shomdteyng-term treatment schedules are described in
Figure 6A. Briefly, we first implanted GL261 celisto the right hemisphere of mice brain. Seven days
after implantation, vehicle or test compounds wiateaperitoneally or orally administrated every day
for 10 days. The alkylating agent temozolomide (TM#&s used as a positive control for anti-glioma
activity in mice.During the study, the treated animals did not show visible toxic effects or mortality
and had no significant difference in body weighimpared to the negative control group (Figure 6B).
The treatment with compounds by gavage (Figure d&i@s not significantly decrease X0.05) the
tumor volume compared to negative control groughigle consisted of saline 0.9%, DMSO 10%, and
Tween-80 0.3%), indicating the poor oral absorptbthese molecules. However, the tumor volume of
mice treated intraperitonially witthm (100 mg/kg) andin (100 mg/kg) significantly reduced by 43.8%
and 41.3% (Table S1 and Figure 6D), respectivatynmgared to vehicle-treated mice. These results
indicate that the compounds are able to cross B, Bonfirming our ML predictions. In addition, no
significant differences in tumor volume were obgenbetweertm (100 mg/kg) andin (100 mg/kg)

treatment and the positive control group (TMZ an2§’kg,p > 0.05).
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Figure 6. Preclinical testing ofle 4m, and4n in brain implanted GL261 gliomas. (A) Animal study
design: from treatment day 1"(protocol day), the test compounds were adminigteree a day for a
total 10 days. TMZ was administrated in alternaagsd(protocol days 7, 9, 11, 13 and"16B) Delta
body weight change (final — initial) in C57BL/6 meiacross the different treatments; (C) GL261 tumor
volumes (mm3) quantification of the mice treatedglayage at the 17th day; (D) GL261 tumor volumes
(mm3) quantification of the mice treated by intrajpmeal injection at the 17th day. Asterisks denot
differences from vehicle treated mice (*p<0.05; p01; ***p<0.001);*different from test compounds

at 10 mg/kg (1-way ANOVA, post-hoc Tukey).

2.10. Toxicity studies

For toxicity studies, the blood samples were ctdlecat the end of treatment of glioma implanted
mice and various enzyme markers and blood parasetere estimated (Table 5). Treatment with,
4e and4n at 100 mg/kg did not alter the levels of enzymatiarkers for hepatotoxicity, i.e. alanine

aminotransferase (ALT) and alkaline phosphatasePjAland nephrotoxicity (creatinine). The glucose
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levels remained unchanged. In addition, these camg® did not promote hematological toxicity in

white blood cells counts and hematocrit when comgbao vehicle-treated mice. These results are

encouraging since TMZ promotes toxicity through significant reduction in the number of circulating

immune cells and increases in the levels of enayakkers for hepatotoxicity and nephrotoxicity [50].

Table 5. Serum and blood markers of toxicity at the enttedtments in glioma bearing mice.

Concentration + SD

Parameters
Untreated 4e 4m 4n

ALT (U/L) 7.6+4.2 19.8 +18.6 6.2+3.5 99+44
ALP (U/L) 19.1+8.9 22.2 +8.7 20.3+7.8 20.6 46
Creatinine (mg/dL) 04+0.3 0.3£0.2 04+0.1 58.0.4
Glucose (mg/dL) 108 + 13 94 +14 108 + 16 109 + 15
WBC (x10uL) 8.6+1.6 95+1.3 84+25 9.2+2.6
Hematocrit (%) 445+1.8 455+2.3 46.0+25 3#b2.9

ALT: alanine aminotransferase; ALP: alkaline phaspke; WBC: white blood cells.

3. Conclusions

We have developed robust machine learning modelthéidentification of new compounds able to
penetrate BBB and active glioma cells. The ML medeére applied for virtual screening of our in-
house database of compounds. As a result, forypwtential anti-glioma hits were prioritized and
testedin vitro against three glioma cell lines and astrocytesoAgnthem, compoundée 4m, and4n
were the best candidates from the chalcone seuresenting high potency at submicromolar range
(ECso of 1.4-6.8 uM) and moderate cytotoxicity againstracytes. Then, SAR rules revealed that
compounds containing halogen atom and methyl ghougil position or aliphatic six-member rings and
hydrophobic groups with primary to tertiary carbansR2; and containing 5-nitrofuran ring in R3
position were the most potent. Enzymatic assayisated that inhibition of TrxR may be at least afe

the biological targets of 5-nitrofuran chalconeas.addition, orthogonain vitro assays excluded the



325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

possible promiscuous colloidal aggregate and diikglaeffect of test compounds, indicating that the
cytotoxic effect of the hit compounds is not rethte promiscuous assay-interference. Subsequewntly,
confirmed thein vivo anti-cancer effects of resynthesized compourids 4m, and 4n) using mice
orthotopic glioma model. The treatment of mice with and4n efficiently decreased glioma growth
without promoting body weight reduction, death ninaals, or altering hematological and toxicological
markers. To summarize, the machine learning matkalsloped in this study allowed us to discover two
new lead compounds, which are new chemical scaffdtd developing novel anti-glioma drug

candidates.

4. Experimental section

4.1. Computational

4.1.1. Datasets
In this study, a dataset of compounds containiogdiivity data for C6 cell line was extracted from

ChEMBL database_(https://www.ebi.ac.uk/chembl/; IDHEMBL614657) [28], while a dataset of

compounds with BBB penetration data was selecteoh fa number of publications [29-32]. A brief
description of the datasets is presented below.
» C6 dataset: 376 compounds with gg@ata. Based on a threshold of i, it consisted of 144
active compounds (Bg< 10uM) and 232 inactive compounds (& 10uM);
* BBB dataset: 2,053 compounds with LogBB data. Based threshold of -1, it consisted of
1,570 BBB+ compounds (if LogBB —1: penetrate) and 483 BBB—- compounds (if LogBBI«

not penetrate).

4.1.2. Data Curation
All chemical structures and correspondent bioldgietormation were carefully standardized using

Standardizer v.16.9.5.0 (ChemAxon, Budapest, Hund#tp://www.chemaxon.com) according to the

protocols proposed by Fourches and colleagues F1-&siefly, specific chemotypes such as nitro
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groups and aromatic rings were normalized. In additexplicit hydrogens were added, whereas
organometallic compounds, mixtures, polymers, aaltis swere removed. Then, we performed the
analysis and exclusion of duplicates as follovisif(the reported outcomes of the duplicates waee t
same (e.g. actives active, inactivevs inactive, etc.), one entry would be retained i dataset and the
other excluded; andi] if duplicates presented discordance in biologasivity (e.g. activevsinactive,
BBB+ vs BBB-), both entries would be excluded. ConseqyeBtl duplicates within the C6 dataset and
102 duplicates within the BBB were identified amtnoved from original datasets. Furthermore, a high
concordance was observed between duplicate recbi@6 dataset (82.7%), and BBB dataset (85.3%),

revealing the high quality of these datasets.

4.1.3 Dataset Balancing and chemical space analysis

The curated datasets (C6: 97 actives and 173 ineactBBB: 433 BBB- and 1436 BBB+
compounds) were balanced using a linear under-sagnpbproach [33]. The linear under-sampling
strategy calculates the Euclidean distances betwaeh compound in majority class and whole set of
minority class are measured usikgearest neighbork{NN) algorithm [54]. Then, the samples on
majority classes of C6 and BBB datasets were lipesttracted over the whole set by uskidistances
and used to generate balanced datasets (Supplemnéies S1 and S2, respectively). Finally, a
chemical space analysis of balanced datasets wesraied combining PCA and MACCS keys and

employing the KNIME workspace v.3.2 [55,56].

4.1.4. Molecular fingerprints
Morgan and FeatMorgan fingerprints were calculatethe open-source cheminformatics software

RDKit (http://www.rdkit.org [57]) executed on Pythov.3.6 (https://www.python.org) [58]. Both

fingerprints were generated with radius 2—-4 andvbitor of 2,048 bits. Morgan and FeatMorgan are
circular fingerprints built by applying the Morgaigorithm to a set of user-supplied 2D chemical
structures [59,60]. The fingerprint generation s systematically records the neighborhood of each

non-hydrogen atom into multiple circular layerstopa stablished radius. The Morgan captures highly
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specific atomic information enabling the represtotaof a large set of precisely defined structural
features [59], whereas FeatMorgan uses functiozetufes (i.e., hydrogen-bond donor and acceptors,
aromatic, halogen, basic and acid groups) [61]s8qgbently, these atom-centered substructural fEsatur
are interpreted as indexes of bits in a huge \ithitastring. Each position in this bit string aceds for

the presence or absence of a specific fragmentrief9,60].

4.1.5. Machine learning models
ML models were developed using Random Forest dlgorimplemented in Scikit-learn v.0.19.2

(http://scikit-learn.org/) package available on Ryt v.3.6. The grid search was done using 50-500

estimators (intervals of 25 trees), number of fe{Morgan or FeatMorgan bits) ranging from 6.@% t
100% along the bit vector of 2,048 bits (Morgan &e@tMorgan). The Cohen’s kappa Was used as

scoring function of the estimator.

4.1.6. 5-fold external cross-validation (5FECV)

The full dataset of compounds was randomly divikhd five subsets of equal size; then one of these
subsets (20% of all compounds) is set aside asc@mnal validation set and the remaining four sets
together form the training set (80% of the full)sdlodels were built using the training set whitee t
compounds in momentary external set (fold) wereleyaa to evaluation of predictive performance.
ML models were developed five times, allowing eaththe five subsets to be used as a momentary

external validation set.

4.1.7. Performance of ML models
The predictive performance of ML models was evadatising SE, SP, CCR, PPV, NPV and

These metrics were calculated as follows:

TP

SE= ——
TP + FN

(1

TN

SP= ———
TN + FP

(2)
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_ SE+SP

CCR = 3
> (3)
PPV = i 4
" TP+ FP 4)
NPV = N 5
"~ TN+ FN ®)

Here, TP and TN represent the number of true pesitand true negatives, respectively, while FP and
FN represent the number of false positives andefalsgatives, respectively. Statistical parameters
higher than 0.65 denote that model is predictive.

In addition to the above model evaluation metricsyas used to measure the agreement between
model predictions and experimental data [62]. H&istical parameter is calculated by the follayvin
equations:

TP + TN

Pr(a) = N

(6)

(TP + FP) x (TP + FN) + (TN + FN) x (TN + FP)
N

Pr(e) = (7

__ Pr(a) — Pr(e)
~ 1-Pr(e) (8)

Here, Pr(a) represents the relative observed agneielbetween the predicted classification of the ehod
and the known classification, and Pr(e) is the hiyptical probability of chance agreement. In the,&n
analysis returns values between —1.0 (no agreemadt)l.0 (complete agreement), but values between

0.60 and 1.0 denote that the model is predictive.

4.1.8. Applicability domain
The AD was estimated as a distance threshold fetween a compound under prediction and the
closest nearest neighbors in training set. Thewohg equation was used for calculation of distance
threshold [63]:
Dr=y+Zo 9)
In which ¥ is the average Euclidean distance of the k neasghbors within the modeling setjs the

standard deviation of these Euclidean distanced, Anis an arbitrary parameter to control the
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significance level. We set the default value ofstiparameter Z at 0.5. If the compound distance

exceeded the threshold, the prediction was coresider be less trustworthy [64].

4.1.9. Virtual screening

Developed ML models were used for VS of an in-hdisary of compounds aiming to identify new
potential anti-glioma compounds, which could beeptitllly penetrate BBB. Initially, compounds had
their antiproliferative activity and BBB penetrati@bility predicted by our ML models. Subsequently,
compounds were filtered using a aggregator advieol to identify molecules that are known-to
aggregate in experimental assays [38,39]. Fingllyrwise Tanimoto coefficients between virtual hits
were calculated to select a subset of structudallgrse virtual hits. The selected virtual hits vénem

proceed tan vitro experimental evaluation.
4.2.Cell experiments and chemistry

4.3.Reagents
TMZ, propidium iodide, DMEM medium, BSA, dimethyuléoxide (DMSO), SRB, DTNB, NAC,
1X antibiotic/antimycotic solution, TrxR assay k#u, Triton X-100, and Tween-80 were purchased

from Sigma-Aldrich (St. Louis, MO, USA).

4.3.1. Cell cultures

The C6, US7MG and U251MG cell lines were obtainszimf American Type Culture Collection
(ATCC; Rockville, Maryland, USA); GL261 cells wekendly provided by Dr. Braganhol (Universidade
Federal de Ciéncias da Saude de Porto Alegre, R&jIB Cell lines were used to a maximum of 30
passages. The cells were grown in DMEM supplememigld 10% fetal bovine serum plus 1X
antibiotic/antimycotic solution (Sigma-Aldrich) i humidified incubator at 37 °C. Glioma cells were
treated at a 40-50% confluence. Primary astrooyee isolated from cortex of 2-days old Wistar rats
by mechanical dissociation with Gavg*? — free Hank’s balanced salt solution and plate&adty-L-

Lysine-coated 96-well plates. Astrocytes were naangd in high-glucose DMEM plus antibiotics in a
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humidified incubator, and treated after reaching@@6o confluence (12-15 days) [65]. The test
compounds were dissolved in DMSO at 50 to 100 mkkceatrations in order to achieve a maximum

0.1% DMSO final concentration in the cell cultures.

4.3.2. In vitro antiproliferative activity

SRB assays were performed to screen cytotoxicittheftest compounds identified herein. Briefly,
glioma cells and astrocytes were plated onto 96-alates, treated with test drugs in the 0.1 to aPD
range for 72 h. Afterwards the cells were fixednwiOOpuL of ice-cold 40% trichloroacetic acid for 1 h
at 4°C. Plates were then washed five times witld ezter and left to dry. SRB solution (pQ; 0.4%
SRB in 1% acetic acid) was added to each well aodhated for 30 min. The cells were then washed 4
times with 1% acetic acid and air dried. Then, #0®f 10 mM Tris-base at pH 10.5 was added to each
well to solubilize the dye. The plates were gestigken for 20 min and the absorbance was readdat 51
nm in a microplate reader. Cell numbers were catedl as the percentage absorbance (% cell
proliferation) compared to the absorbance of vehidated (DMSO) controls. In some assays, NAC (2

mM) pretreatments were performed for 1 h prioretst tompounds incubation.

4.3.3. Controls for nonspecific inhibition

Aggregation-based cytotoxicity were evaluated indgbs incubated with test compounds in culture
medium containing no detergent versus 0.0001%,10d00@nd 0.01% Triton X-100. SBR assays were
carried out after 72 h incubation. The fundameaotaicept is that increasing the amount of detergent
will increase the Eg; value of an aggregator, and will have no effectaomeversible/competitive
inhibitor [66]. For evaluation of alkylating effeof test compounds with cysteine residues, NAC (100
and 500 uM) was incubated with test compounds renfyom 10 to 500 uM concentrations in 10 mM
phosphate buffered saline (pH 7.4) for 2 h at 3@ e dark. In addition, we incubated test comisun
with BSA (10 pg/mL) at the same conditions abovscdbed [67]. At the end of incubations, reduced
thiol residues in NAC and BSA were determined gcten with DTNB in the presence of boric acid

buffer (100 mM boric acid, 0.2 mM EDTA, pH 8.5) ftirh at room temperature, and then read at 412
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nm [68]. The thiol-alkylating agent NEM was usedaapositive control for thiol alkylation/depletion.

Data are expressed as % R-SH compared to conbgpdNAC or BSA alone).

4.3.4. Thioredoxin reductase assay

The reducing activity of TrxR (Sigma T9698) on 5[&thiobis-(2-nitrobenzoic acid) (DTNB, Sigma
D8130) was performed on 96-well microplates withinal volume of 100uL at 37 °C. The reaction
medium contained 100 mM potassium phosphate byffér7.0; 0.2 mg.mtt of NADPH, 2 mg.m[* of
DTNB. The amount of TrxR used in the assay was @@ImL". The FlexStation 3 multi-mode plate
reader (Molecular Devices, CA) was used. The agtmwias measured following the appearance of 5-
thio-2-nitrobenzoic acid (TNB) having an absorbapeak at the wavelength of 412 nm and a molar
extinction coefficient of 13.6 mMcm™ [68]. Before starting the reaction reading, thexRrwas
incubated for 15 minutes with the test compounadsuding auranofin (positive control) at 1QM or
DMSO, used as negative control. The reaction wadest with the addition of NADPH. The assays
were performed in duplicate and in the absencehefdnzyme to discount the contribution of the
spontaneous reaction between the substrates. Timgocmds showing more than 50% of inhibition were

further analyzed and had theirsi@letermined using height dilution series (1 uM 8@ M).

4.3.5. Chemical synthesis

Microwave synthesis was performed in microwave Arff@aar, Monowave 300 model. The progress
of all reactions was monitored on Silicycle 60 F28lica gel plates 0.25 mm using ethyl acetate/n-
hexane (v/v) as eluent system. Spots were visuwhlBeirradiation with ultraviolet light (254 nm) or
with sulfuric vanillin solution or ninhydrin solan followed by heating. Melting points were
determined using Fisatom digitdH and**C NMR spectra were recorded on Bruker of 11.74 &esl
spectrometer at 400,13 or 500,13 MHz fdrand 125,76 MHz fot°C with spectral large of 10.0 ppm
for 'H and 240 ppm fot°C using CDC{ as solvent and reference. Chemical shifts arengivgarts per

million (ppm) @ relative to residual solvent peak fod and°C). Spectra mass was performed on a



485  Compact Bruker in LCMS-2020. IR spectra were reedrdn a Nicolet 6700-FTIR Thermo Scientific

486  model (medium, sweep of 4000 to 4009m

487  4.3.5.1. (2E)-1-(4-butylphenyl)-3-(5-nitrofuran-2-yl)prop-éh-1-one (4e)

488 Brown solid; yield 79% (807.7 mg, 2.70 mmol); medfipoint 90° C)*H NMR (CDCk, 500 MHz):5
489 =7.98 (d, 2H,J = 8.2 Hz), 7.76 (d, 1H) = 15.4 Hz), 7.54 (d, 1H] = 15.4 Hz), 7.37 (d, 1H] = 3.7
490  Hz), 7.33 (d, 2H) = 8.2 Hz), 6.83 (d, 1H] = 3.7 Hz), 2.7 (t, 2H) = 7.7 Hz), 1.6 (q, 2H] = 7.4 Hz; 7,7
491 Hz), 1.3 (s, 2HJ = 7.4Hz), 0,9 (t, 3HJ = 7.4 Hz);**C NMR (CDC}, 125 MHz):5 = 188.1, 153.2,
492  149.63, 134.8, 128.9, 128.8, 127.7, 125.2, 11613,21 35.7, 33.2, 22.3, 13.9; IR (neat): 3393, 2974
493 1777, 1021, 777, 570, 470 SmHRMS-ESI (m/z): calcd for GH1/NO4[M+H]+: 299.1158, found:
494  300.1234.

495  4.3.5.2. (2E)-1-(3-methylphenyl)-3-(5-nitrofuran-2-yl)pr@en-1-one (4m)

496 Brown solid; yield 84% (430.8mg, 1.67 mmol); medfipoint 144° C*H NMR (CDCk, 400 MHz):
497 §=7.86 (d, 2H,) = 6.9 Hz), 7.76 (d, 1H] = 15.5 Hz), 7.54 (d, 1H, = 15.5 Hz), 7.4 (d, 2H] = 7.6 Hz),
498  7.38 (d, 1HJ = 3.8 Hz), 6.84 (d, 1H = 3.8 Hz), 2.46 (s, 3H)C NMR (CDCk, 100 MHz):5 = 188.8,
499 153.2, 138.8, 137.2, 134.4, 129.1, 128.7, 127.8,942125.2, 116.3, 113.1, 21.3; IR (neat): 3393429
500 1777, 1021, 777, 570, 470 ¢mHRMS-ESI (m/z): calcd for GH1:NOJM+H]+: 257.0688, found:

501 258.0764.

502 4.3.5.3. (2E)-1-(3-bromophenyl)-3-(5-nitrofuran-2-yl)propeh-1-one (4n).

503 Brown solid; yield 87% (148 mg, 0.45 mmol); meltipgint 146° C*H NMR (CDCk, 500 MHz):5
504 =8.17 (t, 1HJ = 1.7 Hz), 7.98 (d, 1H] = 7.8 Hz), 7.75 (d, 1H] = 7.8 Hz), 7.68 (d, 1H] = 15.4 Hz),
505 7.56 (d, 1HJ = 15.4 Hz), 7.42 (t, 1H] = 7.8 Hz), 7.39 (d, 1H] = 3.8 Hz), 6.87 (d, 1H] = 3.8 Hz);**C
506 NMR (CDCh, 125 MHz):5 = 187.3, 152.7, 138.9, 136.4, 131.6, 130.4, 128,R8(neat): 3393, 2974,
507 1777, 1021, 777, 570, 470 ¢mHRMS-ESI (m/z): calcd for GHsBrNOJM+H]+: 320.9637, found:

508 321.9701.

509 4.3.6. In vivo GL261 glioma growth experiments
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GL261 cell culture and tumor implantatioAnimal experiments were carried out in accordanitk
the Animal Research: Reportinglof Vivo Experiments (ARRIVE) guidelines, the National Inges of
Health guide for the care and use of Laboratorynats (NIH Publications No. 8023, revised 1978) and
institutional guidelines. Mice were obtained fromr dnstitutional Animal Core Facility, and the ar@in
studies were approved by Instructional Animal Cared Use Committee (IACUC, protocol n°
7049120618). The animals were allowed food and mvatk libitum. Orthotopic transplantation of
GL261 glioma cell line in C57BL/6 mice was carriedt as previously described [69,70]. GL261 cells
were cultured to subconfluence, trypsinized, wasime@®MEM without serum, and resuspended in
serum/antibiotics-free DMEM for inoculation. Brigfl GL261 cells (5x1Din 2 pL DMEM) were
injected into the right hemisphere of 60 days-ck¥BL/6 mice (males and females, 17-25 g) previously
anesthetized by ketamine/xylazine (90/10 mg/Kgaiperitoneal.) using a 4d Hamilton microsyringe
coupled with an infusion pump set at 1uL/min (caoates to the bregma: 2.5 mm posterior, 2.5 mm
lateral, and 2.3 mm depth).

Pharmacological treatments and tumor volume quamatiion: After 7 days for tumor establishment,
the animals were grouped (n=9) as follows: vehidtx(10 mg/Kg and 100 mg/Kgim (10 mg/Kg and
100 mg/Kg),4n (10 mg/Kg and 100 mg/Kg), and TMZ (20 mg/Kg). Tesmpounds were administered
once a day for a total 10 days. TMZ was administtah alternate days (protocol days 7, 9, 11, 1B an
15"). Oral (200 ul/gavage) and intraperitoneal (100 hyt intraperitoneal injection) administration
protocols were carried out for comparison. All testnpounds were dissolved in DMSO (10% final),
followed by dilution in 0.9% NaCl containing 0.3%w&en-80. Vehicle consisted of 0.9% saline
containing 10% DMSO and 0.3% Tween-80. The miceewarthanized after 10 days treatment. The
brain was removed, fixed with 10% paraformaldehyshel paraffin embedded. For tumor volume
guantification, three H&E-stained coronal secti¢hgtM thick) were prepared from each brain/animal.
Images were captured and tumor area with each bliam was estimated using the ImageJ® software.

Tumor volume (mr) was calculated by sum of the segmented area@mpsly described [71].

4.3.7. Toxicological markers
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At the end of treatments, the animals were eutleaniby ketamine/xylazine (100 mg/Kg,
intraperitoneal) followed by cardiac puncture. WWhblood samples were collected in EDTA tubes, and
part was harvested without anticoagulants for seseparation by centrifugation (1,300 xg, 10 mimg a
stored at -80 °C. Serum activity of alanine amimudferase (ALT) and alkaline phosphatase (ALRJ, an
glucose and creatinine levels were quantified bigtést Liquiform commercial kits per manufacturer’s
instructions (Labtest diagnostica, Brazil). Haenamgranalyses were carried out in fresh blood samples
collected in EDTA using an ABX Micros 60, HORIBA A8Diagnostics equipment (Montpellier,

France).

4.3.8. Statistical analysis
Data were expressed as average + SD. Data wergzaddly One-way ANOVA followed by Tukey

post-hoc test at a p<0.05 cut-off for significaiGeaphPad Prism 5).

Abbreviations

AD: applicability domain

ALT: alanine aminotransferase

ALP: alkaline phosphatase

Au: auranofin

BBB: blood-brain barrier

BSA: bovine serum albumin

CCR: correct classification rate

CNS: central nervous system

DMEM: Dulbecco's modified eagle medium
Dr: distance threshold

DTNB: 5,5'-dithiobis-2-nitrobenzoic acid
ECso: half maximal effective concentration

EDTA: ethylenediamine tetraacetic acid
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FP: false positives

FN: false negatives

GBM: glioblastoma multiforme
H,SOu: sulfuric acid

k-NN: k-nearest neighbor

ML: machine learning

NAC: N-acetyl-cysteine

NPV: negative predictive value
NEM: N-ethylmaleimide

NMR: nuclear magnetic resonance
LCMS: liquid chromatography—mass spectrometry
PAINS: pan-assay interference compounds
PCA: principal component analysis
PCs: principal components

PPV: positive predictive value

SD: standard deviation

SE: sensitivity

Sl: selectivity index

SP: specificity

SRB: sulforhodamine B

R-OH: thiol

TP: true positives

TN: true negatives

VS: virtual screening

k. Cohen’s kappa
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Highlights

* ML models were developed to predict of anti-glioma activity and BBB penetration
* New hitswith antiproliferative activity were identified by virtual screening

» Three hits presented high potency and moderate cytotoxicity

» Compounds were able to inhibit TrxR enzyme

* Two lead compounds stopped the malignant gliomain vivo without promoting toxicity



