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(E)-2-Oxo-1-phenylsulfonyl-3-alkenes are effectively activated with the aid of a
catalytic amount of chiral titanium reagents in hetero Diels-Alder reactions with vinyl
ethers to produce (2R,4R) or (2R,45)-2,4-cis-2-alkoxy-4-substituted-3,4-dihydro-2H-
pyrans in highly endo- and enantioselective manners. The resulting cycloadducts are
transformed to 5-substituted (5R)-2-phenylsulfonyl-2-cyclohexen-1-ones which are
useful as new chiral building blocks.

In recent years, impressive progress has been made in the field of asymmetric synthesis, in which
catalyzed asymmetric processes for carbon-carbon bond formation are especially interesting.l) Hetero Diels-
Alder reactions of 1-oxa-1,3-butadienes with vinyl ethers, which lead to 3,4-dihydro-2H-pyran derivatives, are
synthetically equivalent to the Michael type conjugate additions. Although their asymmetric versions should be
important as stereoselective carbon-carbon bond forming process, examples of catalyzed asymmetric reactions
remain unexplored. One exception includes the chiral titanium-catalyzed intramolecular hetero Diels-Alder
reaction of the 1-oxa-1,3-butadiene system, derived from the Knoevenagel condensation of an aromatic aldehyde
with N,N-dimethylbarbituric acid.?)

We recently reported that sulfonyl-functionalized o,3-unsaturated ketones work effectively as a new type
of hetero 1,3-diene in Lewis acid catalyzed hetero Diels-Alder reactions with vinyl ethers.3) In the presence of a
Lewis acid catalyst (0.5-10 mol%), such as TiCly(i-PrO); or Eu(fod)3, high rate acceleration was observed to
provide dihydropyrans in excellent yields and with exclusive endo selectivities.#) Such satisfactory results led us
to further investigate the Lewis acid catalysis of these hetero Diels-Alder reaction.
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In this communication, we present the first example of catalyzed asymmetric intermolecular hetero Diels-
Alder reactions by the use of (E)-2-oxo-1-phenylsulfonyl-3-alkenes 1 and vinyl ethers 2.

Enones 1a-c were allowed to react with excess amounts of vinyl ethers 2a-c in the presence of a catalytic
amount of chiral Lewis acids 3a,b in dichloromethane under the conditions shown in Table 1 (Scheme 1).5:6)

Chiral titanium catalysts 3a,b were prepared in situ according to the literature procedure from TiX;(i-
PrO); (X = Cl, Br)?) and (4R,5R)-0.,0.,0.',0. - tetraphenyl-2,2-dimethyl-1,3-dioxolane-4,5-dimethanol (1.1
equiv)®) in the presence of molecular sieves 4A.7)

Table 1. Chiral Lewis Acid-Catalyzed Asymmetric Hetero Diels-Alder Reactions of Enones 1a-c with

Vinyl Ethers 2a-c?)
Entry Enone Vinylether Catalyst Temp Time Cycloadduct
mol% T h Yield/%Y) % ee®)  Abs. config.d
1 1a 2a 3a (50) -78/-30 9/3 4a (78) 48 2R,4R
2 1a 2a 3b (10) -78 20 4a (91) 59 2R,4R
3 1a 2b 3a (50) -30 17 4b (85)°) 62 2R,4R
4 1a 2b 3b (10) -50 6 4b (96) 74 2R,4R
5 1a 2b 3b (10) -78 20 4b (92) 88 2R,4R
6 1a 2¢ 3b (10) -78 20 4c¢ (90) 97 2R,4R
7 1a 2¢ 3b(5) -78 24 4c¢ (90) 95 2R,4R
8 1a 2¢ 3b (10) -78 24 4c (92) 95 2R,4R
9 1b 2¢ 3b (10) -78 24 4d (88) 86 2R, 48
10 1c 2¢ 3b (10) -70 20 de (77)D 97 2R, 4R

a) Unless otherwise noted, all reactions were performed by using enone 1 and vinyl ether 2 (10 equiv.) in
CH;ClIp. b) Yield of isolated cycloadducts. c) Determined by HPLC analysis by using chiral column after
conversion to cyclohexenone 6a (entries 1-8) or acetals 7b (entry 9) and 7¢ (entry 10), see Scheme 2 and
Table 2. d) Determined by 13C NMR spectra after conversion to acetals 10a-c, see Scheme 2 and Table
2. e) A small amount (2%) of inseparable trans-isomer was contained. f) Enone 1c was recovered (17%).

Reaction of enone 1a with a large excess of ethyl vinyl ether 2a was performed in the presence of catalyst
3a (50 mol%), at —78 °C for 9 h and then at —30 °C for 3 h, to give cis-isomer 4a as single isomer in 78% yield
(48% ee, entry 1), while the use of isobutyl vinyl ether 2b resulted slightly better enantioselectivity (62% ee)
(entry 3). The titanium bromide catalyst 3b was found to be more effective to improve both the catalytic cycle
and rate acceleration. Thus, in the presence of 10 mol% of 3b, reactions of enone 1a with vinyl ethers 2a-c
completed even at —78 °C to provide cis-cycloadducts 4a-c in excellent yields (91, 92, and 90%) and with mod-
erate to high enantioselectivities (59, 88, and 97% ee) (entries 2, 5, and 6, respectively). Equally effective
results were observed when a less amount (5 mol%) of the catalyst 3b (90% and 95% ee, entry 7) or less amount
of vinyl ether 2¢ (5 equiv.) was employed (92% and 95% ee, entry 8).

As discussed below, the sense of enantioselection was all the same in reactions of enone 1a with vinyl
ethers 2a-c. In addition, enantioselectivity was effectively enhanced with the increase of bulkiness of the
alkoxyl substituent R! of dienophiles 2a-c (selectivity: 2a < 2b < 2c), and a lower reaction temperature led to a
better result (entry 4 vs entry 5). As a result, other enones 1b,c were allowed to react with isopropy vinyl ether
2c in the presence of the titanium bromide catalyst 3b under similar conditions to provide 4d (88% and 86% ee)
and 4e (77% and 97% ee), respectively (entries 9 and 10).

To determine the absolute configurations of the major enantiomers of dihydropyrans 4a-e, the cyclo-
adducts 4a-e were converted to the corresponding 5-substituted 2-phenylsulfonyl-2-cyclohexen-1-ones 6a-c or
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acetals 7b,c (Scheme 2). Treatment of cycloadducts 4a-e with 4N hydrochloric acid produced cyclohexenones
6a-c in high yields (Table 2) via a sequence of the acid-catalyzed hydrolysis forming 1,5-keto aldehyde 5 and
subsequent intramolecular condensation.9) Further acetalization of 6b,c gave cyclohexenone acetals 7b,c in
95% (86% ee) and 95% (97% ee), respectively.
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Further transformations of unsaturated ketones 6a-c to saturated ketones 9a-¢ were easily performed as
follows: Hydrogenation of 6a (95% ee), 6b (86% ce), and 6¢ (97% ee) in the presence of 10% Pd-C was fol-
lowed by the reductive desulfonylation with tributyltin hydride.1®) Their acetalization with (2R,3R)-2,3-butane-
diol gave the corresponding acetals 10a-c without epimerization in overall yields of 64% (94% de), 56% (85%
de), and 65% (97% de), respectively. The absolute configurations of 10a-c¢ were determined to be R by 13C
NMR spectra.11) Thus, the absolute configurations of the major enantiomers of cis-dihydropyrans 4 were con-
firmed as (2R,4R)-4a-c,12) (2R,4S5)-4d, and (2R,4R)-de.

Table 2. Transformations of Dihydropyrans 4c-e to 2-Cyclohexen-1-ones 6a-c¢, 2-Cyclohexen-1-
one Acetals 7b,c, and Cyclohexanone Acetals 10a-c?)

Yield/%b Yield/%b) Total yield/%b)
Entry  Substrate (5R)-6%) ec %D (5R)-7  ee %9 (BR)-10  de %®©
19 4c 6a (95) 95 - - 10a (64) 94
2 4d 6b 91) - 7b (95) 86 10b (56) 85
3 4e 6c (95) — 7c¢ (95) 97 10c (65) 97

a) Procedures were described in the text and Scheme 2. b) Isolated yield. c) Optical rotations are as
follows: 6a: [a]p25 —42.8° (c = 1.00, CHCl3); 6b: [a]p25-6.77° (¢ = 0.93, CHCl3); 6¢: [a]p25
-19.4° (¢ = 1.00, CHCI3). d) Determined by HPLC analysis. 6éa: DAICEL chiral cel OC: i-PrOH -
hexane = 4:1 v/v. 7b: DAICEL chiral cel OJ: i-PrOH - hexane = 1:2 v/v. 7¢: DAICEL chiral cel
OJ: i-PrOH - hexane = 1:1 v/v. e) Determined by 13C NMR spectra, see Ref. 11. f) Substrates
4a,b were also converted to (5SR)-6a in higher than 90% yields.

In conclusion, 1-phenylsulfonyl-2-oxo0-3-alkenes 1 act as wonderful hetero 1,3-dienes of the 1-oxa-1,3-
diene types in the Lewis acid-catalyzed asymmetric hetero Diels-Alder reactions with vinyl ethers. This hetero
Diels-Alder methodology offers a very effective synthetic route for the enantiomers of 4-substituted 2,4-cis-2-
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alkoxy-3,4-dihydro-2H-pyrans, 5-substituted 2-phenylsulfonyl-2-cyclohexen-1-ones, and 3-substituted cyclo-

hexanones.
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