LETTERS

Synthesis of Octahydro- and Decahydroquinolines by a One-Pot Cascade Reaction of Tetrasubstituted Enecarbamate

Tomohiro Kurose, Chihiro Tsukano,*[®] and Yoshiji Takemoto*[®]

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

(5) Supporting Information

ABSTRACT: A transition-metal-catalyzed cyclopropanation followed by ring opening was investigated for the synthesis of octahydroquinolines **4** and decahydroquinolines **5** having a quaternary carbon center at the angular position, which are core structures of the fawcettimine-type alkaloids. A tandem reaction was also established for the synthesis of decahydroquinolines **5** and the tricyclic compound **6** through an iminium ion intermediate, readily produced by acidic treatment of cyclopropane **2**.

 \mathbf{F} awcettimine, isolated from *Lycopodium fawcettii* by Burnell and co-workers in 1959, is one of the representative *Lycopodium* alkaloids (Figure 1).¹ It is one of more than 80

Figure 1. Fawcettimine-type alkaloids and a natural product containing both octa- and decahydroquinoline skeletons.

congeners reported to date, which include fawcettidine,^{1,2} macleanine,³ and squarrosusine B,⁴ each of which belong to the fawcettimine class of alkaloids. Recently, new members of this alkaloid class, such as lyconesidines,⁵ have been found in related species. Among these compounds, a complex tetracyclic skeleton is common, and the structural diversity mainly derives from the oxidation level and substituents on the B and D rings.⁶ Because of its unique tetracyclic structure, many groups are engaged in synthetic studies of the fawcettimine-type alkaloids.^{7,4} The main focus of these studies has been the synthesis of the hydrindane skeleton (B and D rings), and they are based on Heathcock and Inubushi's pioneering work.^{8p,q} As an exceptional strategy, Dake and Kozak reported Pt(II)-catalyzed cyclization to construct an octahydroquinoline skeleton having a quaternary carbon (C and D rings), 8n while Dake's synthesis proposed the possibility of an octahydroquinoline skeleton as a useful intermediate. Additionally, the skeleton has been found in

various alkaloids such as fendleridine.⁹ Therefore, the development of a concise synthetic method for these skeleta would contribute to the synthesis of not only fawcettimine-type alkaloids but also related natural products.

Considering a synthesis of various analogues, we envisioned that an intramolecular cyclopropanation of tetrahydropyridine 1 followed by a ring opening would give both octa- and decahydroquinoline 4 and 5, respectively (Scheme 1). That is,

by introducing an electron-withdrawing group as a substituent ($R^3 = EWG$), a ring-opening of cyclopropane 2 would readily produce an iminium intermediate 3,¹⁰ which would be converted to 4 and 5 by a proton transfer and stereoselective reduction, respectively. It was expected that various substituents could be introduced into the obtained compounds 4 and 5 by using ketone functionality for the synthesis of fawcettimine-type alkaloids. Moreover, the iminium intermediate 3, derived from a substrate having a hydroxyethyl group ($R^2 = CH_2CH_2OH$), would be intramolecularly trapped with an alcohol to give a

Received: July 12, 2017

tricyclic compound **6**, which can be found in a fendleridine skeleton. While there are many reports about cyclopropanation of monosubstituted enamides and ene carbamates, 11,12 the number of reports decreases as the number of substituents increases. In the case of tetrasubstituted enamides and ene carbamates, pyrolysis of tosylhydrazone^{13a} and formation of carbene from chloroform via treatment of a strong base^{13b} were only employed for cyclopropanation.¹⁴ Thus, there is no example of the use of a transition-metal–carbene complex. Herein, we report synthesis of octahydroquinolines **4**, decahydroquinolines **5**, and tricyclic compound **6** having a quaternary carbon center at the angular position via a transition-metal-catalyzed cyclopropanation of tetrasubstituted ene carbamate and a ring-opening.

Initially, cyclization precursors 1a-h were synthesized from 2piperidone in six to eight steps including Heck or Suzuki– Miyaura coupling, 1,4-reduction,¹⁵ and diazotransfer¹⁶ (Scheme 2). We then investigated transition-metal-catalyzed cyclo-

propanation of tetrasubstituted ene carbamate 1a. When compound 1a was treated with $Cu(OTf)_2$, diketone 12 was obtained in 70% yield via a ring-opening of cyclopropane followed by hydrolysis (Table 1, entry 1). Although Cu(hfacac)₂ could be used for suppressing a ring-opening of cyclopropane, a part of the desired product 2a was converted to octahydroquinoline 4a, which was a mixture of keto and enol tautomers owing to the presence of an acidic proton (entry 2). In contrast, the use of rhodium catalysts, including $Rh_2(OAc)_4$, $Rh_2(cap)_4$, $Rh_2($ $Rh_2(esp)_{2}$ ¹⁸ was effective for suppressing the undesired side reactions (entries 3-5). Specifically, Rh₂(esp)₂ gave hexasubstituted cyclopropane 2a in 57% yield without compounds 4a and 12 (entry 5). For reproducible isolation of the product 2a, addition of triethylamine into an eluent for silica gel column chromatography was important because 2a was not stable on silica gel.

We next focused on the selective transformation of the hexasubstituted cyclopropane 2a into octahydroquinoline 4a and decahydroquinoline 5a. When compound 2a was treated with trifluoroacetic acid (TFA) or $BF_3 \cdot OEt_2$, ring-opening of cyclopropane was followed by a proton transfer to give compound 4a in excellent yields (Table 2, entries 1 and 2).

Table 1. Transition-Metal-Catalyzed Cyclopropanation of Tetrasubstituted Enecarbamate 1a

			yield ^a (%)		
entry	cat.	time	2a	4a	12
1	$Cu(OTf)_2$	10 h	0	0	70
2	$Cu(hfacac)_2^b$	24 h	13	33	0
3	$Rh_2(cap)_4$	2.5 h	42	0	0
4	$Rh_2(OAc)_4$	30 min	52	0	0
5	$Rh_2(esp)_2^c$	15 min	57	0	0

Table 2. Selective Formation of Octahydroquinoline 4a andDecahydroquinoline 5a

	$\begin{array}{c} \text{NC} \\ \text{C} \\ \text$	s acid or H^+ NC 0 equiv) cant (6 equiv) CH_2Cl_2 rt	Et O N 4a ^{Cbz}	5a	
				yield	(%)
entry	Lewis acid or H ⁺	reductant	time	4a	5a
1	TFA ^b	none	30 min	96	0
2	BF ₃ ·OEt ₂ ^b	none	30 min	95	0
3	TFA	Et ₃ SiH	2 h	56	0
4	TFA	Ph ₃ SiH	5 h	40	0
5	TFA	NaBH ₃ CN	2 h	17	0
6	TFA	$NaBH(OAc)_3$	2 h	22 ^c	72 [°]
7	$BF_3 \cdot OEt_2^d$	NaBH(OAc) ₃ ^e	11 h	23 ^c	31 [°]
8	$Ti(OiPr)_4$	$NaBH(OAc)_3$	15 min	29 ^f	0
9	AlCl ₃	$NaBH(OAc)_3$	3 h	59	0
10	$Sc(OTf)_3$	$NaBH(OAc)_3$	2 h	28	0
11	$MgBr_2 \cdot OEt_2$	$NaBH(OAc)_3$	3 h	60	0
	1.				1

^{*a*}Isolated yield. ^{*b*}1 equiv. ^{*c*}The yield was calculated by ¹H NMR. ^{*d*}6 equiv. ^{*e*}10 equiv. ^{*f*}The starting material was recovered (31%). TFA = trifluoroacetic acid.

These results indicated that cyclopropane 2a was readily cleaved to produce an iminium ion such as 3. Thus, reduction of the iminium ion was examined for obtaining decahydroquinoline 5a. When compound 2 was treated with Et₃SiH, Ph₃SiH, or NaBH₃CN under acidic conditions (TFA), these reductions did not proceed (entries 3-5). In sharp contrast, use of NaBH(OAc)₃ was effective, and the reaction gave the desired product 5a in 72% yield along with a small amount of 4a (entry 6). Several Lewis acids were also examined instead of TFA. In the case of BF₃·OEt₂, the reaction gave 5a, but the yield was low (31%, entry 7). In contrast, a combination of NaBH(OAc)₃ and other Lewis acids, including $Ti(OiPr)_4$, AlCl₃, Sc(OTf)₃, and $MgBr_2 \cdot OEt_2$, gave only octahydroquinoline 4a in low to moderate yields (entries 8-11). Therefore, BF3. OEt2 was employed for opening the cyclopropane ring to access compound 4, and a combination of TFA and NaBH(OAc)₃ was determined to provide the best conditions for the synthesis of compound 5. Reduction of the iminium intermediate 3a

proceeded with excellent stereoselectivity because the reductant attacked from the less hindered face (Scheme 3). Because **5a** was

Scheme 3. Stereoselectivity of the Reduction of Iminium Intermediate 3a

a mixture of keto and enol tautomers, the stereochemistry of the *trans*-fused ring system was determined by NOESY experiments after formation of *tert*-butyldimethylsilyl (TBS) enol ether **13a** (Scheme 3). For the synthesis of compound **5a**, compound **4a** was also treated under the optimized reduction conditions (TFA and NaBH(OAc)₃, rt). However, the reaction did not proceed to give **5a**. This result indicated that the iminium ion **3a** was not produced from compound **4a** under these mild conditions.

To determine the scope and limitations, the optimized conditions were applied for the synthesis of several octahydroquinolines 4b-h (Table 3). Cyclopropanation of substrates 1b and 1c having CO₂Me and Boc groups as protecting groups gave compounds 2b and 2c in moderate yields, respectively (entries 1 and 2). Compound 2b readily converted to octahydroquinoline 4b when treated with $BF_3 \cdot OEt_2$. In the case of 2c, MgBr₂·OEt₂ was used instead of BF₃·OEt₂ for suppressing the undesired deprotection of the Boc group. Compound 4c was obtained in excellent yield. Interestingly, the reaction of 1d with its tosyl group gave 4d in 76% yield without acidic treatment, as the corresponding cyclopropane 2d was easily cleaved (entry 3). The reaction of β -keto- α -diazoester 1e did not give compound 2e. Thus, a nitrile group is essential for this cyclopropanation (entry 4). The reaction of 1f did not give cyclopropane 2f because C-H insertion was competitive (entry 5). Benzyl (Bn) and TBS groups were compatible under these reactions, and octahydroquinolines 4g and 4h were obtained in 80% and quantitative yields, respectively (entries 6 and 7).

Because compound **2** was not stable as described above, a onepot cyclopropanation/reductive ring-opening was attempted for the synthesis of decahydroquinolines **5**. Treatment of **1a** with $Rh_2(esp)_2$ was followed by reductive ring opening using TFA and NaBH(OAc)₃ to give decahydroquinoline **5a** in 48% yield, which was comparable to the yield of the stepwise procedure (Table 4, entry 1). Methoxycarbonyl and Boc groups were compatible under these conditions (entries 2 and 3). In the case of substrates having Bn and TBS groups, the desired decahydroquinolines **5g** and **5h** were obtained as major products, respectively, while the reductive ring opening competed with formation of octahydroquinolines **4g** and **4h**.

This one-pot procedure for decahydroquinolines **5** was extended to a one-pot synthesis of tricyclic compound **6** (Scheme 4). Treatment of β -keto- α -diazonitrile **1i** with Rh₂(esp)₂ followed by BF₃·OEt₂ gave compound **6** via cyclopropanation in 66% yield. It is interesting that the cyclopropanation was the preferable process rather than O–H

Table 3. Scope and Limitations of Synthesis ofOctahydroquinoline 4

^{*a*}Isolated yield. ^{*b*}MgBr₂·OEt₂ was used instead of BF₃·OEt₂. ^{*c*}Without acidic treatment. ^{*d*}The reaction time was 35 min. Bn = benzyl, TBS = *tert*-butyldimethylsilyl.

Table 4. One-Pot Cyclopropanation and Reductive Ring-Opening for Synthesis of Decahydroquinoline 5

NC [~]		Rh2(esp)2 (1 m) CH2Cl2, rt, 5-15 then TFA (6 ec NaBH(OAc)3 (1 CH2Cl2, rt, time	ol%) 5 min juiv) 0 equiv)		A NC	2 N R ¹	
entry	\mathbb{R}^1	R ²	time	product	yield (%) ^a of 5 + 4	ratio ^b of 5 :4	
1 ^c	Cbz	Et	2 h	5a	48	4.0:1	
2 ^{<i>d</i>}	CO ₂ Me	Et	50 min	5b	64	7.3:1	
3 ^d	Boc	Et	45 min	5c	77	6.5:1	
4	Cbz	CH ₂ CH ₂ OBn	8 h	5g	47	3.3:1	
5 ^d	Cbz	CH ₂ CH ₂ OTBS	2 h	5h	43	3.8:1	
a Isolated yield. b The ratio was calculated by 1 H NMR. c 0.1 mol % of							

 $Rh_2(esp)_2$ was used. ${}^{d}Rh(OAc)_2$ was used instead of $Rh_2(esp)_2$.

insertion in the first step, and an iminium ion could be trapped without formation of ene carbamate in the second step. It was difficult to obtain compound 6 from octahydroquinoline 4i

Scheme 4. One-Pot Synthesis of Tricyclic Compound 6

under mild conditions including treatment with $\mathsf{BF}_3{\cdot}\mathsf{OEt}_2$ or CSA.

In summary, we have investigated a concise synthesis of octahydroquinolines 4 and decahydroquinolines 5 having a quaternary carbon center at the angular position via a one-pot reaction involving cyclopropanation and ring opening. The use of Ts-protected ene-sulfonamide 1d was found to be effective for direct access to 4. One-pot procedures for the synthesis of decahydroquinolines 5 and tricyclic compound 6 were also established. These methods would be powerful because a quaternary carbon center and a six-membered carbocycle were constructed at once. Synthesis of related alkaloids based on the developed strategy for decahydroquinolines 5 is now underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b02122.

Experimental procedures and spectral data (¹H and ¹³C NMR, IR, and HRMS) (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: tsukano@pharm.kyoto-u.ac.jp. *E-mail: takemoto@pharm.kyoto-u.ac.jp.

ORCID

Chihiro Tsukano: 0000-0002-9361-0857 Yoshiji Takemoto: 0000-0003-1375-3821

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the JSPS KAKENHI (Grant No. JP17H05051), the Platform Project for Supporting Drug Discovery and Life Science Research from Japan Agency for Medical Research and Development (AMED).

REFERENCES

(1) (a) Burnell, R. H. J. Chem. Soc. (R) **1959**, 3091 (http://pubs.rsc.org/en/journals/journalissues/jr#!issueid=jr1959_0_0&ty-pe=archive&issnprint=0368-1769). (b) Inubushi, Y.; Ishii, H.; Harayama, T.; Burnell, R. H.; Ayer, W. A.; Altenkirk, B. Tetrahedron Lett. **1967**, 8, 1069.

(2) (a) Burnell, R. H.; Chin, C. G.; Mootoo, B. S.; Taylor, D. R. *Can. J. Chem.* **1963**, *41*, 3091. (b) Ishii, H.; Yasui, B.; Nishino, R.-I.; Harayama, T.; Inubushi, Y. *Chem. Pharm. Bull.* **1970**, *18*, 1880.

(3) Ayer, W. A.; Ma, Y.-T.; Liu, J.-S.; Huang, M.-F.; Schultz, L. W.; Clardy, J. Can. J. Chem. 1994, 72, 128.

(4) Li, P.; Huang, W.; Zhuo, J.; Guo, Z.; Cao, W.; Xu, L.; Ma, L.; Chen, Z.-E.; Kennelly, E. J.; Wu, S.-B.; Long, C. *Tetrahedron* **2015**, *71*, 5308.

(5) Hirasawa, Y.; Morita, H.; Kobayashi, J. *Tetrahedron* **2002**, *58*, 5483.

(6) For reviews of *Lycopodium* alkaloids, see: (a) Ayer, W. A. *Nat. Prod. Rep.* **1991**, *8*, 455. (b) Ma, X.; Gang, D. R. *Nat. Prod. Rep.* **2004**, *21*, 752.

(c) Morita, H.; Hirasawa, Y.; Kobayashi, J. Heterocycles 2009, 77, 679.

(7) For recent reviews of synthesis of fawcettimine-type alkaloids, see:
(a) Murphy, R. A.; Sarpong, R. *Chem. - Eur. J.* 2014, 20, 42.
(b) Nakayama, A.; Kitajima, M.; Takayama, H. *Synlett* 2012, 23, 2014.
(c) Wang, X.; Li, H.; Lei, X. *Synlett* 2013, 24, 1032.

(8) For selected examples of synthesis of fawcettimine-type alkaloids, see: (a) Tanimura, S.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2017, 19, 3684. (b) Hong, B.; Li, H.; Wu, J.; Zhang, J.; Lei, X. Angew. Chem., Int. Ed. 2015, 54, 1011. (c) Zaimoku, H.; Taniguchi, T. Chem. - Eur. J. 2014, 20, 9613. (d) Zhang, J.; Wu, J.; Hong, B.; Ai, W.; Wang, X.; Li, H.; Lei, X. Nat. Commun. 2014, 5, 4614. (e) Hou, S.-H.; Tu, Y.-Q.; Liu, L.; Zhang, F.-M.; Wang, S.-H.; Zhang, X.-M. Angew. Chem., Int. Ed. 2013, 52, 11373. (f) Itoh, N.; Iwata, T.; Sugihara, H.; Inagaki, F.; Mukai, C. Chem. -Eur. J. 2013, 19, 8665. (g) Zeng, C.; Zheng, C.; Zhao, J.; Zhao, G. Org. Lett. 2013, 15, 5846. (h) Ge, H. M.; Zhang, L.-D.; Tan, R. X.; Yao, Z.-J. J. Am. Chem. Soc. 2012, 134, 12323. (i) Pan, G.; Williams, R. M. J. Org. Chem. 2012, 77, 4801. (j) Li, H.; Wang, X.; Lei, X. Angew. Chem., Int. Ed. 2012, 51, 491. (k) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Angew. Chem., Int. Ed. 2011, 50, 8025. (1) Yang, Y.-R.; Shen, L.; Huang, J.-Z.; Xu, T.; Wei, K. J. Org. Chem. 2011, 76, 3684. (m) Jung, M. E.; Chang, J. J. Org. Lett. 2010, 12, 2962. (n) Kozak, J. A.; Dake, G. R. Angew. Chem., Int. Ed. 2008, 47, 4221. (o) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem., Int. Ed. 2007, 46, 7671. (p) Heathcock, C. H.; Smith, K. M.; Blumenkopf, T. A. J. Am. Chem. Soc. 1986, 108, 5022. (q) Harayama, T.; Takatani, M.; Inubushi, Y. Chem. Pharm. Bull. 1980, 28, 2394.

(9) (a) Brown, K. S.; Budzikiewicz, H.; Djerassi, C. Tetrahedron Lett. 1963, 4, 1731. (b) Burnell, R. H.; Medina, J. D.; Ayer, W. A. Can. J. Chem. 1966, 44, 28.

(10) For recent reviews of ring-opening of aminocyclopropane with an electron-withdrawing group, see: (a) Grover, H. K.; Emmett, M. R.; Kerr, M. A. *Org. Biomol. Chem.* **2015**, *13*, 655. (b) Schneider, T. F.; Kaschel, J.; Werz, D. B. *Angew. Chem., Int. Ed.* **2014**, *53*, 5504.

(11) For reviews of cyclopropanation of enamides and ene carbamate, see: (a) Courant, T.; Dagousset, G.; Masson, G. *Synthesis* **2015**, *47*, 1799. (b) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* **2003**, *103*, 977.

(12) For examples regarding cyclopropanation of enamides and ene carbamate, see: (a) Song, Z.; Lu, T.; Hsung, R. P.; Al-Rashid, Z. F.; Ko, C.; Tang, Y. Angew. Chem., Int. Ed. 2007, 46, 4069. (b) Lu, T.; Song, Z.; Hsung, R. P. Org. Lett. 2008, 10, 541. (c) De Simone, F.; Gertsch, J.; Waser, J. Angew. Chem., Int. Ed. 2010, 49, 5767. (d) Wenkert, E.; Hudlicky, T. J. Org. Chem. 1988, 53, 1953. (e) Csuk, R.; von Scholz, Y. Tetrahedron 1994, 50, 10431.

(13) (a) Remy, C. C.; King, S. W.; Cochran, D.; Springer, J. P.; Hirshfield, J. J. Org. Chem. 1985, 50, 4120. (b) Padwa, A.; Rashatasakhon, P.; Ozdemir, A. D.; Willis, J. J. Org. Chem. 2005, 70, 519.
(14) There are a few reports of cyclopropanation of an electron-rich indole ring having two substituents at the C2 and C3 positions; see: (a) Huang, H.-X.; Jin, S.-J.; Gong, J.; Zhang, D.; Song, H.; Qin, Y. Chem. - Eur. J. 2015, 21, 13284. (b) Zhang, B.; Wee, A. G.H. Chem. Commun.
2008, 4837. (c) Shen, L.; Zhang, M.; Wu, Y.; Qin, Y. Angew. Chem., Int. Ed. 2008, 47, 3618. (d) Zhang, M.; Huang, X.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2009, 131, 6013. (e) Salim, M.; Capretta, A. Tetrahedron 2000, 56, 8063.

(15) Geiger, C.; Kreitmeier, P.; Reiser, O. Adv. Synth. Catal. 2005, 347, 249.

(16) Kitamura, M.; Tashiro, N.; Miyagawa, S.; Okauchi, T. Synthesis **2011**, 2011, 1037.

(17) Padwa, A.; Austin, D. J.; Hornbuckle, S. F.; Semones, M. A.; Doyle, M. P.; Protopopova, M. N. J. Am. Chem. Soc. **1992**, 114, 1874.

(18) Espino, C. G.; Fiori, K. W.; Kim, M.; DuBois, J. J. Am. Chem. Soc. **2004**, *126*, 15378.