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Abstract: The asymmetric copper-catalyzed addi-
tion of dialkylzinc to enals followed by organocata-
lyzed one-pot aldehyde a-functionalization has
been accomplished providing C—C, C—Cl or C—F
bond formation. These simple procedures led to the
creation of two contiguous stereocenters in excel-
lent enantioselectivities (typical ee=99%). This
methodology has been applied in the synthesis of
(25,35) isomer of Valnoctamide®.

Keywords: copper; enals; enantioselectivity; Mi-
chael addition; organocatalysis

Generating high molecular complexity with multiple
stereocenters in a minimum of operations is one of
the great challenges synthetic chemists are facing. The
asymmetric Cu-catalyzed conjugate addition of organ-
ometallic reagents with subsequent electrophilic trap-
ping of the enolate generated in situ, is one of the
methods of choice for such a purpose.'! Unfortunate-
ly, most of these reactions occur on cyclic systems, are
often limited in terms of electrophiles scope, and
mostly, lead to the formation of only the trans diaste-
reoisomer.?

Recently, enamine catalysis has emerged as a
method of choice for the a-functionalization of car-
bonyl compounds, notably aldehydes, in high enantio-
selectivity and with a large scope of electrophiles.®!
Furthermore, this methodology has already shown
widespread applications in cascade reactions due to
the high compatibility of the reaction system.[*! Thus
combining an enantioselective copper-catalyzed Mi-
chael reaction with an asymmetric enamine organoca-
talytic step would easily lead to highly functionalized
enantioenriched compounds.”!

Recently, our group reported the first enantioselec-
tive copper-catalyzed addition of organometallic re-
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agents to o,B-unsaturated aldehydes. This reaction
leads cleanly to the 1,4 adduct under relatively mild
and simple conditions (use of BINAP, at 0 to —20°C),
but unfortunately with relatively modest enantioselec-
tivities (around 90:10 er).!!

Thus, enantioselectivities in the case of two contigu-
ous stereocenters should be improved by combining
the Cu-catalyzed reaction with an enamine step
(Scheme 1). There are several advantages in carrying

O 0
I Cu/L* |
' *  R,Zn
R' R R
0]
electrophile | E
enamine R R

organocatalyst

control of two contiguous stereocenters
enantiodivergent synthesis

Scheme 1. Proposal for the one-pot copper/enamine reac-
tions.

out these two reactions in a one-pot process. First, it
could improve the overall yield, particularly when
volatile aldehyde intermediates are involved. Further-
more, another of the great advantage would be its ap-
plication in enantiodivergent synthesis. Indeed, by
switching the enantiomers of copper ligand/organoca-
talyst, each pair of enantiomers and diastereoisomers
could be obtained.*")

In a preliminary experiment, the conjugate addition
of diethylzinc to trans-2-heptenal, catalyzed by copper
thiophene carboxylate (CuTC) with (R)-BINAP, was
followed by trapping with the highly electrophilic
vinyl sulfone 2 (Scheme 2).[¥! Without any amine cata-
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Scheme 2. Preliminary attempts using vinyl sulfone 2.

lyst, direct quenching of the zinc enolate did not lead
to any diastereocontrol (dr=1/1) with the formation
of numerous side products. However, when commer-
cial (S)-TMS-protected diphenylprolinol catalyst 4a
was used (after quenching of the zinc enolate by addi-
tion of acetic acid), excellent enantioselectivity (99%
ee) was obtained for the syn isomer with a good 71%
isolated yield.!” Using the (R)-enantiomer 4b, the anti
adduct was formed predominantly with also an excel-
lent 99% ee confirming the reaction potential in enan-
tiodivergent synthesis. Using aminal-pyrrolidine cata-
lysts 4¢ and 4d, which already gave excellent results
in such additions, also led to the same levels of enan-
tioselectivity together with slightly higher yield.!"”!

Since the two enantiomers of TMS-protected diphe-
nylprolinols 4a and 4b are cheap and commercially
available, this catalyst has been chosen to study the
scope of the reaction.

Structurally different alkyl enals and diethyl- or di-
methylzinc were then tested in this reaction
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(Scheme 3). As expected, excellent enantioselectivi-
ties for the one-pot procedure were obtained in all
cases (99% ee). Small alkyl substituents (R'=Me) as
well as bulky ones (R'=i-Pr) could be used leading to
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8 After reduction using NaBH, for chiral SFC separation.
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[l The ee was determined on the corresponding carboxylic acid.
[ Use of (S)-BINAP.

Scheme 3. Scope of the one-pot addition to sulfone 2.

the same range of yields (57 to 71%) and diastereose-
lectivities (dr=75/25 to 85/15). It must be pointed out
that chloroform had to be added for the second step
when Me,Zn was used for a better solubilization of
the mixture. Furthermore, by choosing the appropri-
ate catalyst/ligand combination, one can synthesize
either the syn or the anti isomer.

To demonstrate the utility of the methodology,
compound 3d was applied to the synthesis of (25,3S)-
2-ethyl-3-methylvaleramide 7 (Scheme 4). This stereo-
isomer of Valnoctamide® (a mild tranquilizer com-
mercialized as a mixture of four stereoisomers) is cur-
rently in preclinical testing and has been prepared by
an eight-step synthesis.!"!! Oxidation of the aldehyde
3d followed by removal of the sulfone using Mg/

asc.wiley-vch.de 1857


http://asc.wiley-vch.de

COMMUNICATIONS

Adrien Quintard and Alexandre Alexakis

1) (S)-Binap (11%)

10 CuTc (10%)
| Et,0, 0°C
[+ Mesn 2)  SO,Ph
Et —
2 SO,Ph
1d

catalyst 4a, 20 mol%
AcOH, r.t., CHCI;
58%

O

o)
‘\(\(sozph NaClO,, H,0,
< SO,Ph t:BUOH / H,0,

Me" Bt T2 85% 2

3d

5
antilsyn: 83/17
99% ee (anti)

M Q (11 0
SO,Ph 9 ref.
HOJ\(\( HO — HN
W SO,Ph MeOH, 53% . -
Me" Et Me' CEt Me" Et

(2S5,3S)-2-ethyl-3-
methylvaleric acid 6

(2S,3S)-2-ethyl-3-
methylvaleramide 7

Scheme 4. Application to the synthesis of (25,3S) isomer of Valnoctamide® 7.

MeOH led to (2S,3S5)-2-ethyl-3-methylvaleric acid 6
which can give access in one step to Valnoctamide® as
previously reported.!""

Besides the addition to highly reactive vinyl sulfone
2, we wondered if this one-pot procedure could be ap-
plied to other electrophiles.

We thus turned out our attention to the organocata-
lytic fluorination (Scheme 5). Gratifyingly, the orga-
nocatalytic trapping was also efficient using NFSI as
fluorine source.'”” Excellent enantioselectivities were
obtained of the fluorinated adduct 8a using the com-
mercially available BINAP/4e catalyst combination.
This insertion of fluorine is highly interesting due to
the importance of fluorine in medicinal chemistry.!"’)
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Scheme 5. One-pot Michael/fluorination sequence.
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Changing from (R)-BINAP to (S)-BINAP for alde-
hyde 1a, and using dimethylzinc, induced a total re-
versal from the anti to the syn adduct 8b.

Another interesting reaction is the chlorination of
aldehydes which can give access to highly versatile
molecules.'¥! Preliminary experiments using NCS as
the chlorinating reagent and various commercial orga-
nocatalysts afforded disappointing results (poor con-
version, mixture of mono- and di-chlorinated prod-
ucts).™! Conversely, the direct chlorination of zinc
enolates also affords mixture of diastereomers.”!! For-
tunately, using aminal-pyrrolidine catalyst 4d, a good
selectivity for the mono-chlorinated adduct (25/1 to
99/1) was observed together with good enantioselec-
tivities (ee >98%) using either dimethyl- or diethyl-
zinc reagents (Scheme 6). Furthermore, no other side
products were detected in the crude reaction mixture.

Finally, attempts using other electrophiles as a bro-
mine source, DEAD or PhNO failed. PhNO or
DEAD decomposed in the reaction mixture while
bromination with 4,4-dibromo-2,6-di-tert-butylcyclo-
hexa-2,5-dienone lead to a 1/1 diastereoisomeric ratio.
This is probably due to the racemization of the
carbon stereocenter bearing the bromine atom under
acidic conditions. Finally, nitroolefins did not give any
conversion in the one-pot reaction conditions. It is of
course possible to perform the above reactions in a
two-pot procedure.

In conclusion, we have disclosed here the first one-
pot copper Michael/enamine substitution on enals.
Different dialkylzinc nucleophiles in combination
with various electrophiles could be used leading to
the creation of two stereogenic centers in almost per-
fect enantioselectivities. Furthermore, the reaction
occurs under simple and mild conditions using in
most cases cheap commercially available catalysts
(BINAP and diaryl-prolinol silyl ethers). This repre-
sents the first example of combination of an asymmet-
ric copper-catalyzed step, combined with an enantio-
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Scheme 6. One-pot Michael/chlorination sequence.

selective organocatalytic step. Further applications of
such combinations toward the synthesis of useful
building blocks are currently underway in our labora-
tory.

Experimental Section

All the relative and absolute configurations were assigned
by analogy. Indeed, the absolute configuration of the first
copper catalysis step and the different organocatalytic steps
are all known.[6812.14

General Procedure for the One-Pot Copper Catalysis/
Addition to Sulfone

Synthesis of 3d: A solution of 13.1 mg of CuTc (10 mol%/
enal), and 46.8 mg of (S)-BINAP (11 mol%/enal) in 3.6 mL
of diethyl ether was stirred at room temperature for 20 min
under argon. The solution was then cooled down to 0°C
before the dimethylzinc (1.32 mmol, 3.3 equiv. (1,2M in tol-
uene) was added and the solution stirred 15 min at 0°C.
Pentenal (0.66 mmol, 1.65 equiv.) in 1 mL of diethyl ether
was then added and the resulting solution stirred at 0°C for
14 h. 0.35 mL of acetic acid and 1.5 mL of chloroform were
then added and the mixture warmed up to room tempera-
ture. 20 mol%/sulfone of the TMS-protected diphenyl proli-
nol (26 mg, 0.08 mmol) and then 120.4 mg of the vinyl sul-
fone (0.4 mmol, 1 equiv.) were added. The mixture was
stirred at room temperature for 2 h before the reaction was
quenched by addition of 5mL of 1M HCI, The reaction
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mixture was extracted by three times 10 mL of dichlorome-
thane, the organic layer washed by 5 mL of water, dried
over Na,SO, and the solvent evaporated to give the crude
product. Purification by flash chromatography using a cyclo-
hexane/ethyl acetate (8/2) mixture afforded the correspond-
ing Michael adduct; yield: 96.0 mg (0.23 mmol, 58%).
'"H NMR (400 MHz, CDCl,): 6 =0.8-0.96 (m, 6H), 1.24-1.42
(m, 2H), 1.81-1.85 (m, 1H), 2.08-2.15 (m, 1H), 2.45-2.56
(m, 1H), 3.01-3.12 (m, 1H), 4.70 (dd, major dia, 1H, /=6.0,
3.2 Hz), 4.75 (m, minor dia, 1H), 7.54-7.96 (m, 10H), 9.53
(s, 1H, minor dia), 9.60 (s, 1H, major dia); “C NMR
(75 MHz, CDCly): 6=11.9 (CHj;), 16.4 (CH;), 22.1 (CH,),
26.5 (CH,), 35.8 (CH), 53.5 (CH), 80.9 (CH), 129.1 (CH),
129.3 (CH), 129.7 (CH), 1345 (CH), 134.7 (CH), 137.7
(Cquat), 204.1 (CH); MS (ESI): m/z=409.3 [M+H]*; HR-
MS (ESI): m/z=426.1400 [M+NH,]*, caled. for
CyH,305S,N: 426.1403.
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