#### Tetrahedron 66 (2010) 7965-7969

Contents lists available at ScienceDirect

## Tetrahedron

journal homepage: www.elsevier.com/locate/tet

# Ratiometric fluorescent determination of Zn(II): a new class of tripodal receptor using mixed imine and amide linkages

Doo Youn Lee<sup>a</sup>, Narinder Singh<sup>b</sup>, Min Joung Kim<sup>a</sup>, Doo Ok Jang<sup>a,\*</sup>

<sup>a</sup> Department of Chemistry, Yonsei University, Wonju, Gangwon 220-710, Republic of Korea <sup>b</sup> Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India

#### ARTICLE INFO

Article history: Received 18 June 2010 Received in revised form 10 August 2010 Accepted 10 August 2010 Available online 14 August 2010

Keywords: Zn<sup>2+</sup> Sensor Fluorescent Ratiometric detection Tripodal

#### ABSTRACT

We synthesized a novel receptor with a unique combination of sp<sup>2</sup> nitrogen (-CH=N-) and carbonyl groups from amide linkages. These two moieties are judiciously incorporated into the receptor design such that these sites simultaneous binding a metal ion may generate a stable five-member ring. The receptor has been used to selectively detect  $Zn^{2+}$  through changes in the fluorescence spectra. Upon  $Zn^{2+}$  binding with the receptor, the fluorescence band shifted to enhance fluorescence intensity, allowing ratiometric determination of  $Zn^{2+}$  concentration.

© 2010 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Transition metal ions are an interesting paradox in life.<sup>1</sup> They can be both integral enzyme components necessary for biological activity,<sup>2</sup> and toxic to human life, flora, and fauna. Zinc is one of many transition metal ions necessary for life, and is the second most abundant transition metal ion, after Fe<sup>2+</sup> or Fe<sup>3+</sup>, in humans and other mammals.<sup>3</sup> Zn<sup>2+</sup> plays vital roles in cellular metabolism, neurotransmission, signal transduction and gene expression.<sup>4</sup> Misregulated Zn<sup>2+</sup> concentrations have been associated with physical growth retardation and neurological disorders, such as cerebral ischemia and Alzheimer's disease.<sup>5</sup>

Developing a chemosensor to estimate  $Zn^{2+}$  concentration is important. Fluorescent chemosensors are particularly interesting because of their sensitivity.<sup>6</sup> The design of a  $Zn^{2+}$  chemosensor must fulfill some basic criteria: (i) The sensor must have a linear relationship between fluorescence intensity and  $Zn^{2+}$  concentration across a broad range of  $Zn^{2+}$  concentrations.<sup>7</sup> (ii) The sensor should be selective for  $Zn^{2+}$ , not responding to other biological metal ions, and should not be perturbed by the environment.<sup>8</sup> (iii) The sensor should respond quickly, i.e.,  $Zn^{2+}$  should complex with the coordination sphere quickly and stably.<sup>6c,9</sup> The sensor design is crucial because  $Zn^{2+}$  is spectroscopically and magnetically silent due to its 3d<sup>10</sup>4s<sup>0</sup> configuration.<sup>10</sup> Many of these qualities have been addressed in several reported Zn<sup>2+</sup> chemosensors. However, most of these sensors have limited selectivity, and many change intensities at a single wavelength.<sup>11</sup> Measuring at a single wavelength suffers from further errors due to receptor concentration, photobleaching and environmental effects. Alternatively, using the ratio of fluorescence intensity at two wavelengths, or ratiometric fluorescent determination, eliminates these errors, but can only offered by sensors that show shift emission bands upon binding with analytes.

The present investigation aimed to develop a highly sensitive and selective ratiometric chemosensor that works across a wide range of  $Zn^{2+}$  concentrations, including low concentrations. Although many Zn<sup>2+</sup> selective receptors have been reported, few ratiometrically determine Zn<sup>2+</sup> concentrations.<sup>12</sup> Due to poor design, several of these sensors, mainly di-2-picolylamine (DPA), polyamines, iminodiacetic acid, bipyridine, quinoline, or Schiffbases, suffer from interference from first row transition metal ions, such as Fe<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup>, etc.<sup>13</sup> These binding sites have similar binding affinities for multiple transition metal ions. The binding sites in this study are based upon X-ray crystallographic analysis of many zinc enzymes.<sup>14</sup> These structures can be used to map out the preferred coordination sphere of Zn<sup>2+</sup>. The resulting coordination spheres can be broadly categorized as catalytic, cocatalytic, and structural. These categories are sufficient to draw conclusions on the structural identities of zinc binding sites. Imidazole nitrogens, carboxylate oxygens, and cysteine thiols predominate as ligands in catalytic, cocatalytic, and structural sites, respectively.<sup>15</sup> Thus, we





<sup>\*</sup> Corresponding author. Tel.: +82 337602261; fax: +82 337602182; e-mail address: dojang@yonsei.ac.kr (D.O. Jang).

<sup>0040-4020/\$ –</sup> see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2010.08.024

incorporated a unique combination of sp<sup>2</sup> nitrogens (-CH=N-) and carbonyl groups from amide linkages into our receptor design. Upon these two sites simultaneous binding Zn<sup>2+</sup> metal ions, a stable five-membered chelate ring forms.<sup>16</sup> Additionally, Zn<sup>2+</sup> is a border line case in HSAB principle.<sup>17</sup> sp<sup>2</sup> nitrogen is relatively soft, while the carbonyl group is harder binding site. Thus, this unique combination of imine and amide linkages in -CH=N-NH-C(O)- framework could serve our purposes.

#### 2. Results and discussion

Tripodal receptor **5** was synthesized as shown in Scheme 1. Tripodal aldehyde **3** was synthesized as described in the literature.<sup>18</sup> The required receptor **5** was prepared in 98% yield by the condensation of tripodal aldehyde **3** with benzoic hydrazide **4**. The formation of imine linkages was determined from the singlet signal at 8.81 ppm in the <sup>1</sup>H NMR spectrum of compound **5**. To establish the role of tripodal framework to recognize  $Zn^{2+}$ , compound **7** was designed and synthesized. The compound **7** has the same type of binding sites as the tripodal receptor **5**.



Figure 1. Changes in fluorescence intensity of receptor 5 (10  $\mu$ M) upon adding particular metal ions (40  $\mu$ M) in CH<sub>3</sub>CN/DMSO=99:1 ( $\lambda_{ex}$ =323 nm).

This enhanced fluorescence intensity in the new band seems to be due to combination of structural rigidity of the metal complex and metal binding close to the fluorophore. These factors might also cooperate to induce the emission band shift. The



Scheme 1.

The photophysical properties of **5** were investigated in CH<sub>3</sub>CN/ DMSO (99:1, v/v). Receptor **5** displayed a characteristic UV–vis spectrum with three bands at  $\lambda_{max}$ =284, 298, and 323 nm (Fig. S2). The band at  $\lambda_{max}$ =323 nm was designated as an intraligand charge transfer transition in the molecule due to imine linkages. Upon excitation of receptor **5** (10 µM in CH<sub>3</sub>CN/DMSO (99:1, v/v)) at  $\lambda_{max}$ =323 nm, the fluorescence spectrum of receptor gives emission at  $\lambda_{max}$ =370 nm.<sup>19a</sup> The binding properties of receptor **5** were evaluated toward various metal ions, such as Ca<sup>2+</sup>, Mg<sup>2+</sup>, Fe<sup>3+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>, and Ag<sup>+</sup> (Fig. 1). Upon adding 40 µM Zn<sup>2+</sup> solution to 10 µM receptor **5**, the emission intensity at  $\lambda_{max}$ =370 nm decreased and a new red-shifted emission band at  $\lambda_{max}$ =432 nm appeared, which increased by more than 40-fold. This is reasonably good brightness to consider this receptor a Zn<sup>2+</sup> sensor. The other metal ions (as nitrate salts) revealed no such shift in the emission band under the same conditions. imine linked free sensor may undergo cis-trans isomerism, giving weak fluorescence intensity due to the non-radiative decay of the excited state.<sup>19b-f</sup> Metal binding with the sp<sup>2</sup> nitrogen donor (-CH=N-) hinders this freedom, and consequently blocks the route of non-radiative decay, resulting in enhanced fluorescence. The metal binding close to the fluorophore changes the ICT band.<sup>20a</sup> Receptor **5** binding with  $Zn^{2+}$  showed a change in its UV-vis spectrum (Fig. S2) demonstrating the binding of  $Zn^{2+}$  in the ground state of the receptor, which also authenticates the shift in CT band.<sup>20b</sup> Thus, the red-shift along with enhanced fluorescence results from two operations. The metal binding modulates fluorescence intensity at two bands. Therefore, receptor 5 can be used for ratiometric fluorescent determination of  $Zn^{2+}$ . The ratiometric response of receptor **5** toward the surveyed metal ions is displayed in Figure 2. The results show a highly selective response to  $Zn^{2+}$  ions.



**Figure 2.** Ratiometric fluorescence  $(I_{432}/I_{370})$  response of receptor **5** (10 µM) upon adding a particular metal salt (40 µM) in CH<sub>3</sub>CN/DMSO=99:1.

To evaluate the role of an array of binding sites available in tripodal receptor **5**, receptor **7** was designed and synthesized. Receptor **7** resembles a single pod of receptor **5**. Similar to receptor **5**, receptor **7** displayed a fluorescence emission band at  $\lambda_{max}$ =350 nm at 30 µM in CH<sub>3</sub>CN/DMSO (99:1, v/v) upon excitation at  $\lambda_{max}$ =292 nm. For these experiments, we used 30 µM receptor **7** to have approximately equal binding sites as 10 µM receptor **5**. The binding properties of receptor **7** were evaluated toward various metal ions. As expected, adding 40 µM Zn<sup>2+</sup> ions to 30 µM receptor **7** neither shifted any emission band nor enhanced fluorescent intensity. These experiments clearly authenticate the role of judicial binding in a tripodal framework. In other words, the binding sites in receptor **5** not only provide appropriate binding but also structural rigidity or organization in the pseudocavity.

To gain additional insight into applications for receptor 5 as a  $Zn^{2+}$  sensor, a titration was performed as shown in Figure 3. Figure 3 shows the changes in the fluorescence spectrum pattern of receptor **5** upon continuously adding  $Zn^{2+}$  ions. The titration shows that continuously adding  $Zn^{2+}$  ions to 10  $\mu$ M receptor 5, decreased the emission band intensity at  $\lambda_{max}$ =370 nm, while the intensity at  $\lambda_{max}$ =432 nm gradually increased. The titration showed another point at which the fluorescence intensity increased at low Zn<sup>2+</sup> concentrations and reached a plateau at 40  $\mu$ M Zn<sup>2+</sup>. Thus, receptor **5** is very sensitive, and even 2.0  $\mu$ M  $Zn^{2+}$  modulates fluorescence intensity. Moreover, complex formation does not take much time, as all these spectra were recorded immediately after mixing Zn<sup>2+</sup>. Figure S1 shows the ratiometric response of receptor **5** for  $Zn^{2+}$ . The linearity of this graph indicates that the sensor can be used along a specific range of  $Zn^{2+}$  concentrations with detection limit as low as 0.9  $\mu$ M  $Zn^{2+}$ .<sup>21</sup> Based on the Benesi–Hildebrand plot, the  $K_a$  of receptor **5** for  $Zn^{2+}$  was  $(1.9\pm0.2)\times10^4$  M<sup>-1</sup> (Fig. 4).<sup>22</sup>



Figure 3. Fluorescence spectra changes of receptor 5 (10  $\mu M$ ) upon adding Zn(NO<sub>3</sub>)<sub>2</sub> in CH<sub>3</sub>CN/DMSO=99:1 ( $\lambda_{ex}$ =323 nm).



Figure 4. Benesi–Hildebrand plot to determine the stability constant of  $Zn^{2+}$  with receptor 5.

To determine the binding pattern of receptor **5** with  $Zn^{2+}$  we began with the stoichiometry of the complex. Continuous variation methods were used to determine the stoichiometric ratios of receptor **5** and  $Zn^{2+}$ .<sup>23</sup> Figure 5 shows Job's plot of the fluorescence intensity of free receptor **5** and the intensity of the system with the molar fraction of the host  $\{[H]/([H]+[G])\}$  for a series of solutions in which the total host and  $Zn^{2+}$  concentrations were constant and the molar fraction of host continuously varied. The results illustrate that the plot approaches a maximum when the molar fraction of host is about 0.5, meaning that  $Zn^{2+}$  forms a 1:1 complex with receptor **5**.



**Figure 5.** Job's plot between receptor **5** and Zn<sup>2+</sup>. The [HG] concentration was calculated by the equation  $[HG] = \Delta I / I_0 \times [H]$ .

The exact binding mode was established by <sup>1</sup>H NMR while titrating receptor **5** with Zn<sup>2+</sup> ions (Fig. 6). Upon adding 0.5 equiv of Zn<sup>2+</sup> ions to receptor **5**, the <sup>1</sup>H NMR signals of -CH=N- and -NH-C(O)- showed downfield and upfield shifts, respectively. The methylene ( $-CH_2-$ ) signals shifted downfield and split in two. Similarly, all signals corresponding to aromatic protons shifted. Adding the next equivalent also shifted the signals except for -CH=N-. At the end of the titration, the NH signal of -NH-C(O)shifted by  $\Delta\delta=0.34$  ppm and -CH=N- signals by  $\Delta\delta=0.04$  ppm. The synchronized shifts in CH signal of -CH=N- and NH signal of -NH-C(O)- reveal that these binding sites are participate for coordinating to Zn<sup>2+</sup> in the receptor pseudocavity.



Figure 6. Family of <sup>1</sup>H NMR spectra of receptor 5 upon adding Zn<sup>2+</sup> ions in DMSO-d<sub>6</sub>.

Every attempt failed to obtain a single crystal of the complex; this limited us to comment on the exact structure of the complex and the conformation of amide moiety. We performed MacroModel calculations for the binding mode of receptor **5** with  $Zn^{2+}$  (Fig. 7).<sup>24</sup> The calculated structures support our hypothesis that the imine and amide linkages are responsible for  $Zn^{2+}$  coordination as demonstrated by NMR studies and these binding sites are projected toward the metal ion in the energy minimized  $Zn^{2+}$  complex of receptor **5**. The energy minimized calculations also reveal that the C=N bonds exist in *E* configuration and the rotamers with respect to the carbon–nitrogen hydrazide bond are in *Z* conformation in the complex formed.<sup>25</sup>

#### 4. Experimental section

#### 4.1. General information

All solvents were dried by standard methods. Unless otherwise specified, chemicals were purchased from commercial suppliers, and used without further purification. TLC was performed on glass sheets pre-coated with silica gel (Kieselgel 60 F<sub>254</sub>, Merck). The <sup>1</sup>H and <sup>13</sup>C NMR spectrum were performed in DMSO- $d_6$  with TMS as an internal reference on a Bruker 400 NMR spectrometer, which operated at 400 MHz for <sup>1</sup>H and 100 MHz for <sup>13</sup>C nuclei. The chemical shifts were reported as  $\delta$  values (ppm) relative to TMS. The CHN



Figure 7. Energy minimized structure of Zn<sup>2+</sup> complex with receptor 5 as obtained by MacroModel calculation (two views of the same metal complex).

Finally, we analyzed the utility of receptor **5** as a  $Zn^{2+}$  sensor in a competitive medium, a medium that contains other metal ions (Fig. 8). In these experiments, fluorescence intensity was measured in a series of solutions containing receptor **5**, with different amounts of  $Zn^{2+}$  and other metal ions all at the same concentration. The fluorescence intensity was almost identical to that in the absence of other metal ions. Therefore, receptor **5** is highly selective for, and can be used to recognize  $Zn^{2+}$ .



Figure 8. Estimating  $Zn^{2+}$  ions with receptor 5 (10  $\mu$ M) in the presence of equimolar metal ions in CH<sub>3</sub>CN/DMSO (99:1, v/v) at 432 nm.

#### 3. Conclusions

A novel receptor has been synthesized to determine  $Zn^{2+}$  concentrations. The receptor has the unique combination of sp<sup>2</sup> nitrogen (-CH=N-) and carbonyl groups from amide linkages that provide perfect binding sites for  $Zn^{2+}$ . Upon  $Zn^{2+}$  binding with receptor **5**, the fluorescence band shifted and increased in intensity. Therefore, receptor **5** can be used to ratiometrically determine  $Zn^{2+}$  concentration. The receptor is selective for  $Zn^{2+}$  even in competition with other metal ions.

analyses were obtained on a CE Instrument EA1110. The fluorescence measurements were performed on a Perkin–Elmer LS55 Luminescence Spectrometer.

#### 4.2. Synthesis of compound 5

A solution of 2,2',2"-((nitrilotris(ethane-2,1-diyl))tris(oxy))tribenzaldehyde (100 mg, 0.22 mmol) in THF (10 mL) was added to benzoic hydrazide (103 mg, 0.76 mmol) and a catalytic amount of Zn(ClO<sub>4</sub>)<sub>2</sub> in MeOH (10 mL) under argon at room temperature. After stirring for 3 h at room temperature, a precipitated solid was filtered and washed with THF and MeOH, yielding 176 mg (98%) of compound **5**: White solid; mp: 254~257 °C, <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  3.15 (t, 6H, *J*=5.2 Hz, CH<sub>2</sub>), 4.20 (t, 6H, *J*=5.2 Hz, CH<sub>2</sub>), 6.95–6.98 (m, 3H, Ar), 7.07–7.10 (m, 3H, Ar), 7.27–7.31 (m, 3H, Ar), 7.47–7.50 (m, 6H, Ar), 7.55–7.59 (m, 3H, Ar), 7.83–7.87 (m, 9H, Ar), 8.81 (s, 3H, CH=N), 11.82 (br, 3H, -NH); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  53.8, 67.1, 112.9, 120.8, 122.7, 125.7, 127.6, 128.4, 131.4, 131.7, 133.5, 143.5, 157.0, 163.1. Anal. Calcd for C<sub>48</sub>H<sub>45</sub>N<sub>7</sub>O<sub>6</sub>: C, 70.66; H, 5.56; N, 12.02. Found C, 70.68; H, 5.57; N, 11.99.

#### 4.3. Metal binding studies

Metal binding ability of receptor **5** was performed using 10  $\mu$ M of receptor **5** in CH<sub>3</sub>CN/DMSO (99:1, v/v). Measuring flasks each contained 10  $\mu$ M of receptor **5** along with varied amounts of a particular salt in CH<sub>3</sub>CN/DMSO (99:1, v/v). The solutions were kept at 25 $\pm$ 1 °C for 3 h, and were shaken occasionally. Fluorescence spectra were recorded with excitation at 323 nm.

#### 4.4. Stability constant determination

The stability constant of receptor **5** with zinc was determined by preparing solutions containing  $10 \,\mu\text{M}$  of receptor **5** and varying

amounts (0–40  $\mu M)$  of zinc salt in CH\_3CN/DMSO (99:1, v/v). The emission was measured at 432 nm.

#### 4.5. Stoichiometry determination

Mixtures of receptor–zinc salt were prepared at 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1. These solutions were kept at  $25\pm1$  °C before recording their spectra. The plot of [HG] versus [H]/[H]+[G] was used to determine the stoichiometry of the complex. [HG] was calculated by the equation  $[HG]=\Delta I/I_0\times[H]$ .

### 4.6. Competitive Zn<sup>2+</sup> binding

Solutions were prepared containing receptor **5** (10  $\mu$ M) and equimolar interfering metal ions and Zn<sup>2+</sup> ions (6, 12, 18, 24, 30, and 36  $\mu$ M). The fluorescence intensity of each solution was recorded at 432 nm.

#### Acknowledgements

This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MEST) through the Center for Bioactive Molecular Hybrids (No. R11-2003-019-00000-0).

#### Supplementary data

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.tet.2010.08.024. These data include MOL files and InChIKeys of the most important compounds described in this article.

#### **References and notes**

- van Dongen, E. M. W. M.; Dekkers, L. M.; Spijker, K.; Meijer, E. W.; Klomp, L. W. J.; Merkx, M. J. Am. Chem. Soc. 2006, 128, 10754–10762.
- (a) Vallee, B. L.; Falchuk, K. H. Physiol. Rev. 1993, 73, 79–118; (b) Ronghua, Y.; Ke'an, L.; Kemin, W.; Fenglin, Z.; Na, L.; Feng, L. Anal. Chem. 2003, 75, 612–621.
- (a) Berg, J. M.; Shi, Y. Science **1996**, 271, 1081–1085; (b) Dai, Z. H.; Xu, X. D.; Canary, J. W. Chem. Commun. **2002**, 1414–1415; (c) Wu, Z. K.; Zhang, Y. F.; Ma, J. S.; Yang, G. Q. Inorg. Chem. **2006**, 45, 3140–3142.
- (a) O'Halloran, T. V. Science 1993, 261, 715–724; (b) Burdette, A. C.; Lippard, S. J. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3605–3610.
- (a) Choi, D. W.; Koh, J. Y. Annu. Rev. Neurosci. 1998, 21, 347–375; (b) Weiss, J. H.; Sensi, S. L.; Koh, J. K. Trends Pharmacol. Sci. 2000, 21, 395–401.
- 6. For reviews: (a) Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Chem. Soc. Rev. 2010, 127–137; (b) Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 993–1017; (c) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566; (d) Prodi, L.; Bolletta, F.; Montalti, M.; Accheroni, N. Coord. Chem. Rev. 2000, 205, 59–83.
- (a) Takagi, M.; Nakamura, H.; Ueno, K. Anal. Lett. **1977**, *10*, 1115–1122; (b) Gunnlaugsson, T.; Leonard, J. P. J. Chem. Soc., Perkin Trans. 2 **2002**, 1980–1985; (c) Gunnlaugsson, T.; Nieuwenhuyzen, M.; Richard, L.; Thoss, V. J. Chem. Soc., Perkin Trans. 2 **2002**, 141–150; (d) Gunnlaugsson, T.; Nieuwenhuyzen, M.; Richard, L.; Thoss, V. Tetrahedron Lett. **2001**, *42*, 4725–4728.

- (a) Hayashita, T.; Takagi, M. In *Comprehensive Supramolecular Chemistry*; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vögtle, F., Suslick, K. S., Eds.; Pergamon: Oxford, 1996; pp 635–669; (b) Gutsche, C. D. *Calix[4]arenes re-visited*; The Royal Society of Chemistry: Cambridge, 1998, pp 164–165.
- Lakowicz, J. R. Topics in Fluorescence Spectroscopy, Probe Design and Chemical Sensing; Academic: New York, NY, 1994; p 4.
- Burdette, S. C.; Frederickson, C. J.; Bu, W.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 1778–1787.
- (a) Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517–1549; (b) Kim, H. J.; Park, S. Y.; Yoon, S.; Kim, J. S. Tetrahedron 2008, 64, 1294–1300; (c) Jung, H. J.; Singh, N.; Jang, D. O. Tetrahedron Lett. 2008, 49, 2960–2964; (d) Banthia, S.; Samanta, A. J. Phys. Chem. B 2006, 110, 6437–6440; (e) Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. J. Biol. Chem. 1985, 260, 3440–3450.
- (a) Xu, Z.; Baek, K.-H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.; Shin, I.; Yoon, J. J. Am. Chem. Soc. 2010, 132, 601–610; (b) Zhang, X.; Lovejoy, K. S.; Jasanoff, A.; Lippard, S. J. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 10780–10785; (c) Qian, F.; Zhang, C.; Zhang, Y.; He, W.; Gao, X.; Hu, P.; Guo, Z. J. Am. Chem. Soc. 2009, 131, 1460–1468; (d) Wong, B. A.; Friedle, S.; Lippard, S. J. J. Am. Chem. Soc. 2009, 131, 7142–7152; (e) Xue, L.; Liu, C.; Jiang, H. Chem. Commun. 2009, 1061–1063; (f) Zhang, X.; Hayes, D.; Smith, S. J.; Friedle, S.; Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15788–15789; (g) Tomat, E.; Nolan, E. M.; Jaworski, J.; Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15776–1577; (h) Komatsu, K.; Urano, Y.; Kojima, H.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 13447–13454; (i) Kiyose, K.; Kojima, H.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2003, 42, 2996–2999; (k) Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2003, 12, 2966–2999; (k) Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2003, 12, 124, 6555–6562.
- (a) Tamanini, E.; Katewa, A.; Sedger, L. M.; Todd, M. H.; Watkinson, M. *Inorg. Chem.* **2009**, *48*, 319–324; (b) Felton, C. E.; Harding, L. P.; Jones, J. E.; Kariuki, B. M.; Pope, S. J. A.; Rice, C. R. *Chem. Commun.* **2008**, 6185–6187; (c) Aoki, S.; Sakurama, K.; Ohshima, R.; Matsuo, N.; Yamada, Y.; Takasawa, R.; Tanuma, S.; Takeda, K.; Kimura, E. *Inorg. Chem.* **2008**, *47*, 2747–2754; (d) Atilgan, S.; Ozdemir, T.; Akkaya, E. U. Org. Lett. **2008**, *10*, 4065–4067; (e) Major, J. L.; Parigi, G.; Luchinat, C.; Meade, T. J. Proc. Natl. Acad. Sci. U.S.A. **2007**, *104*, 13881–13886; (f) Huang, S.; Clark, R. J.; Zhu, L. Org. Lett. **2007**, *9*, 4999–5002; (g) Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y. Org. Biomol. Chem. **2005**, *3*, 1387–1392.
- 14. Vallee, B. L.; Auld, D. S. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 2715-2718.
- 15. Vallee, B. L.; Auld, D. S. FEBS Lett. 1989, 257, 138-140.
- Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, 2nd ed.; John Wiley: West Sussex, 2009; 18–19.
- Huheey, J. E.; Keiter, E. A.; Keiter, R. L.; Medhi, O. K. *Inorganic Chemistry*, 4th ed.; Pearson: New Delhi, 2009, pp 237–243.
- Chand, D. K.; Ragunathan, K. G.; Mak, T. C. W.; Baradwaj, P. K. J. Org. Chem. 1996, 61, 1169–1171.
- (a) Singh, N.; Hundal, M. S.; Hundal, G.; Martinez-Ripoll, M. Tetrahedron 2005, 61, 7796–7806; (b) Li, L.; Dang, Y.-Q.; Li, H.-W.; Wang, B.; Wu, Y. Tetrahedron Lett. 2010, 51, 618–621; (c) Ray, D.; Bharadwaj, P. K. Inorg. Chem. 2008, 47, 2252–2254; (d) Wu, J. S.; Liu, W. M.; Zhuang, X. Q.; Wang, F.; Wang, P. F.; Tao, S. L.; Zhang, X. H.; Wu, S. K.; Lee, S. T. Org. Lett. 2007, 9, 33–36; (e) Yang, G. Q.; Morlet-Savary, F.; Peng, Z. K.; Wu, S. K.; Fouassier, J. P. Chem. Phys. Lett. 1996, 256, 536–542; (f) Yang, G. Q.; Wu, S. K. J. Photochem. Photobiol. A-Chem. 1992, 66, 69–77.
- (a) Xu, Z.; Kim, G.-H.; Han, S. J.; Jou, M. J.; Lee, C.; Shin, I.; Yoon, J. *Tetrahedron* 2009, 65, 2307–2312; (b) Suksai, C.; Tuntulani, T. *Chem. Soc. Rev.* 2003, 32, 192–202.
- 21. Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem. **1996**, 68, 1414–1418.
- 22. Benesi, H.; Hildebrand, H. J. Am. Chem. Soc. 1949, 71, 2703-2707.
- 23. Job, P. Ann. Chim. 1928, 9, 113–203.
- Mohamed, F.; Richards, N. G. T.; Liskamp, W. C. H.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440-467.
- (a) Palla, G.; Predieri, G.; Domiano, P. *Tetrahedron* **1986**, *42*, 3649–3654; (b) Sinkkonen, J.; Ovcharenko, V.; Zelenin, K. N.; Bezhan, I. P.; Chakchir, B. A.; Al-Assar, F.; Pihlaja, K. *Eur. J. Org. Chem.* **2002**, 2046–2053.