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Abstract: One-pot tandem palladium-catalysed amination and
intramolecular amidation of tert-butyl (2-chloropyridin-3-yl)carb-
amate with substituted primary anilines allows for the preparation
of 3-arylated 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-ones (49–
90% yield) in two steps from commercially available materials.
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The 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one ring
system (1) constitutes the heterocyclic core of compounds
possessing a diverse range of biological properties
(Scheme 1). Indeed members of this structural class have
demonstrated anti-inflammatory, analgesic and antide-
pressant activities amongst others.1 General approaches
which will allow facile exploration of structure–activity
relationships within this class are therefore of value. The
preparation of unsymmetrical 1,3-disubstituted imida-
zo[4,5-b]pyridin-2-ones 2 (R1

≠ R2) from 2,3-diamino-
pyridine as precursor is challenging and has required the
use of protecting group strategies.2 Access to 2 has also
been described from 2-chloro-3-nitropyridine;1b,1c how-
ever, the sequence suffers from limited scope with low
overall yields for the multistep sequence. A elegant ap-
proach based on the chemo- and regioselective palladium-
catalysed amination of 3-iodo-2-chloropyridine has re-
cently been reported3 and permits the preparation of 2
(R1 = aryl, R2 = alkyl or aryl) in four steps from commer-
cially available materials. In this letter, we report an alter-
native general approach to 3-arylated imidazopyridinones
2 (R1 = substituted aryl and heteroaryl; R2 = H) based on
a tandem reaction sequence, which uses commercially
available 3-amino-2-chloropyridine as the ultimate build-
ing block.

Our synthetic route is outlined in Scheme 1 and required
amination of tert-butyl (2-chloropyridin-3-yl)carbamate
(4) with a primary aniline (R1NH2) to afford an intermedi-
ate 2,3-diaminopyridine 3 (R1 = substituted aryl and het-
eroaryl). We speculated that the 2-anilino nitrogen of 3
could engage in an intramolecular amidative ring closure
to afford the desired cyclic ureas 2 (R1 = aryl/heteroaryl;
R2 = H) in one-pot. To our surprise, no examples of tran-
sition-metal-catalysed amination of an aryl halide bearing
a carbamate protected amine in the ortho-position have
been previously reported.4 A palladium-catalysed process
would, however, be expected to allow the desired amina-

tion to take place in preference to competing amidation
with the secondary carbamate moiety.5 The protected
aminochloropyridine 46 is readily prepared on multigram
scale from 2-chloro-3-aminopyridine using the conditions
reported by Kelly for related aminopyridines (NaHMDS,
Boc2O, THF, 81% yield) and can be isolated by crystalli-
sation from i-PrOH–water.7,8

An initial survey of bidentate phosphine ligands9 for the
Pd-catalysed amination of 4 with aniline quickly identi-
fied XantPhos10,11 as most promising and established the
viability of the proposed tandem process. The results of
further optimisation of base, Pd precatalyst and solvent
combination to maximise the conversion of chloropyri-
dine 4, by way of intermediate 3a, to imidazopyridine 2a
are summarised in Table 1. The ethereal solvents tetra-
hydrofuran and dioxane were found to facilitate the in-
tramolecular amidative conversion of 3a to 2a (entries 1–
3, 4–6) in comparison to toluene when using Cs2CO3 as
base with up to 86A% of 2a formed in a mixture of tolu-
ene and tetrahydrofuran (entry 3). The addition of catalyt-
ic triethylamine12 was not found to be beneficial (entry 7)
whilst water suppressed ring closure of 3a (entries 8–10).
Further screening (entries 11–18) identified the combina-
tion of Pd2(dba)3 (3 mol%), XantPhos (6 mol%) with
t-BuONa as base in refluxing tetrahydrofuran13 (15 mL/g)
as optimum. Under these conditions, 2a was formed in up
to 93A% (entry 16) and was isolated in 82% yield
following chromatography.14 Alternatively, a solvent
combination of toluene–isopropanol (4:1) was also effec-
tive (entry 19).

Control experiments in which either Pd2(dba)3, XantPhos
or t-BuONa were absent led to no consumption of 4 estab-
lishing that all three components are required (Table 1,
entries 20–22). Thus, under these conditions, the process
is Pd-catalysed and does not proceed by way of a simple
SNAr displacement of the 2-chloropyridine 4 by the
aniline nucleophile. Further support for a mechanistic
rationale proceeding by way of 3a is provided by the
observation that although urea 5 (readily formed by
condensation of 3-amino-2-chloropyridine with phenyl-
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isocyanate) does undergo intramolecular cyclisation to 2a
under the optimised conditions (Scheme 2), 5 is not ob-
served in the conversion of 4 to 2a.15

With conditions established for the one-pot conversion of
4 to 2a, the scope of the aniline nucleophile in this process
was evaluated (Table 2). A wide range of substituted
anilines were found to be viable coupling partners afford-
ing the desired 3-arylated dihydroimidazopyridinones
2b–m in moderate to excellent isolated yields. Electron-
donating and electron-withdrawing substituents
engendering ester, nitrile, alkoxy, fluoro, trifluoromethyl
and chloro were tolerated on the aniline aromatic ring un-
der the reaction conditions developed (entries 2–11).
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Table 1 Optimisation of Reaction Conditionsa

Entryb Pd precatalyst 
(mol%)

Solvent 
(mL/g)

Base (mol%), 
additive (mol%)

HPLC of 2a 
(A%)

HPLC of 3a 
(A%)

HPLC of 4 
(A%)

1 Pd(OAc)2 (4) toluene (10) Cs2CO3 (130) 64 17 19

2 Pd(OAc)2 (4) dioxane (10) Cs2CO3 (130) 73 0 26

3 Pd(OAc)2 (4) toluene (10), THF (1) Cs2CO3 (130) 86 8 6

4 Pd2(dba)3 (2) toluene (10) Cs2CO3 (130) 78 18 2

5 Pd2(dba)3 (2) dioxane (10) Cs2CO3 (130) 76 0 24

6 Pd2(dba)3 (2) toluene (10), THF (1) Cs2CO3 (130) 65 0 35

7 Pd2(dba)3 (2) toluene (10) Cs2CO3 (130), Et3N (10) 65 21 13

8 Pd2(dba)3 (2) toluene (10) Cs2CO3 (130), H2O (130) 4 42 54

9 Pd2(dba)3 (2) toluene (10) Cs2CO3 (130), H2O (250) 40 49 11

10 Pd2(dba)3 (2) toluene (10) Na2CO3 (140), H2O (140) 3 75 22

11 Pd2(dba)3 (2) toluene (15), THF (5) t-BuONa (130) 83 0 17

12 Pd2(dba)3 (2) toluene (15), THF (5) t-BuONa (250) 84 0 16

13 Pd2(dba)3 (3) toluene (15) t-BuONa (140) 67 15 18

14 Pd2(dba)3 (3) toluene (20) t-BuONa (140) 63 19 18

15 Pd2(dba)3 (3) toluene (15) t-BuONa (140) 87 6 7

16 Pd2(dba)3 (3) THF (15) t-BuONa (140) 93 (82)c 5 2

17 Pd2(dba)3 (3) THF (15) t-BuOK (140) 80 20 2

18 Pd2(dba)3 (3) toluene (20) t-BuOK (140) 83 11 6

19 Pd2(dba)3 (3) toluene–i-PrOH (20)d t-BuONa (140) 87 2 9

20 Pd2(dba)3 (3) THF (15) None 0 0 100

21 None THF (15) t-BuONa (140) 0 0 100

22 Pd2(dba)3 (3) THF (15) t-BuONa (140)(no XantPhos) 0 0 100

a Reactions were performed at reflux for 18–23 h under N2 with 150 mol% PhNH2. HPLC A% were determined by reverse-phase analysis on 
a Betasil C18 4.6× 250 mm, 3 mm column at 210 nm.
b Entries 1–12, XantPhos (4 mol%); entries 13–21, XantPhos (6 mol%); entry 22, no XantPhos added.
c Isolated yield following purification by chromatography.
d Toluene–i-PrOH (4:1).
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ortho-Substituents were viable (entries 4, 11) although in
the case of 2-methylaniline, a significant level of interme-
diate 3k (R1 = 2-MeC6H4) remained after 24 hours, pre-
sumably due to steric encumbrance in the cyclisation to
form 2k. Use of heterocyclic amines was also possible
with the coupling of 3-aminopyridine (entry 12) proceed-
ing uneventfully. However, 2-aminopyrazine was unreac-
tive (entry 13). Due to the high polarity and consequent
low solubility of the product pyridinones, the solvent
combination of toluene–isopropanol (4:1) was superior to
THF in some instances, resulting in less viscous reaction
mixtures. In general, the product imidazopyridinones
were isolated by filtration through a silica plug followed
by recrystallisation.14,16 The further functionalisation of
the 1-position nitrogen of imidazopyridin-2-ones of type
2a–l by alkylation has been previously reported1a and
thereby provides potential access to diverse unsymmetri-
cally 1,3-disubstituted imidazo[4,5-b]pyridin-2-ones 2.

To date, efforts to extend the scope of this tandem reaction
sequence to encompass primary alkylamines have met
with limited success. Under the conditions optimised for
aniline coupling partners, only low levels of amination to
form the desired 3-alkylated dihydroimidazopyridinones
have been observed with unconverted chloropyridine 4
predominating in most instances along with other uniden-
tified impurities.17 Indeed the amination reactions of pri-
mary alkyl amines with heteroaryl chlorides, such as 2-
chloropyridine, have typically had limited scope and
required high catalyst loadings.18,19 Further evaluation of
alternative catalyst systems to address this limitation is
currently pursued.15

In summary, we have developed a new synthetic entry to
diversely substituted 3-arylated 1,3-dihydro-2H-imida-
zo[4,5-b]pyridin-2-ones 2 (R1 = aryl, heteroaryl; R2 = H)
in only two steps from commercially available 3-amino-2-
chloropyridine. The tandem reaction sequence developed
is palladium-catalysed and demonstrates a broad range of
functional group tolerance with products isolated in
moderate to excellent yields. As such, this synthetic
approach should prove of utility in further evaluation of
the structure–activity relationships of these biologically
interesting compounds.
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characterisation data.
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amine, (R)-1-phenylethylamine and 1-(2-aminoethyl)-
piperidine. In all instances <20A% of desired imidazo-
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in ref. 3 which employs Pd2(dba)3/BINAP as catalyst system 
for amination.

D
ow

nl
oa

de
d 

by
: N

an
ya

ng
 T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 N

T
U

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.


