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Abstract—A formal synthesis of the antimicrobial tricyclic macrolides, tubelactomicins A and E, featured by a transannular Diels–
Alder (TADA) approach, has been explored. The key issue for the transannular cyclization was the synthesis of a 24-membered
macrolactone equipped with all the requisite functionalities, which has been achieved using an intramolecular Hiyama cross-coup-
ling strategy. The Hiyama coupling reaction spontaneously triggered off the TADA reaction. From the endo-TADA adduct, formal
syntheses of tubelactomicins A and E were achieved. The 24-membered macrolactone formation was also achieved via an intra-
molecular ring-closing metathesis approach.
� 2007 Elsevier Ltd. All rights reserved.
The isolation and structure determination of (+)-tube-
lactomicin A (1) (Scheme 1) were reported by studies
at the Institute of Microbial Chemistry in 2000.1 This
tricyclic 16-membered macrolide 1 showed potent anti-
microbial activity against acid-fast bacteria, including
drug-resistant strains. Following the isolation of 1, the
same group isolated and characterized structurally
similar macrolides, tubelactomicins B (2), D (3), and E
(4).2 These antibiotics 2–4 also showed a broad range
of antimicrobial activity. In 2005, we reported the total
synthesis of 1, thereby establishing the stereochemistry
of the (+)-natural form.3 Tatsuta and co-workers have
also accomplished the total synthesis of 1.4 Recently,
we also accomplished the total syntheses of 2–4 and
established their unknown stereochemistries.5 In the
accomplished total synthesis of (+)-tubelactomicins,
our group and Tatsuta’s group utilized intramolecular
Diels–Alder (IMDA) approaches for the construction
of the octahydronaphthalene parts in 1–4. On the other
hand, it might be possible that the tricyclic structures of
1–4 are constructed by a transannular Diels–Alder
(TADA) reaction of a 24-membered macrolactone
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equipped with all the requisite functionalities. Attracted
by this hypothesis, we have explored the total synthesis
of tubelactomicins using this plausible TADA approach
as a key step.6 Herein, we report the total syntheses of 1
and 4, which were realized using the attempted TADA
strategy. Our synthetic approach is summarized in
Scheme 1. As substrates for the synthesis of the key
24-membered macrolactone such as 5, we envisioned
long-chained esters 6, which incorporate with vinylst-
annane, vinylboronate, or vinylsilane and vinyl iodide
functionalities at both terminals. These highly function-
alized esters 6 would be obtained by the Wittig
olefination of a-phosphonopropionyl ester 7 and
(E,E,E)-undeca-6,8,10-trienal 9 (for 6 with M =
trimethylsilyl = TMS). Ester 7 could be prepared from
the previously reported vinylstannane 8.3b On the other
hand, (trienyl)trimethylsilane 9 could be obtained by
the Horner–Wadsworth–Emmons (HWE) olefination
of the known aldehyde 103a and (E,E)-pentadienyl phos-
phonate 11. Along this synthetic plan, we started the
synthesis of the 24-membered lactone 5.

First, the a-phosphonopropionate 7 was synthesized
from 8 via a two-step manipulation, that is, tin–iodine
exchange, followed by esterificaton with commercially
available 12 (Scheme 2). We initially explored the
HWE olefination of 7 with aldehyde 13,3a a synthetic
intermediate of our previous total synthesis of 1. This
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olefination provided 14 in a yield of 63%, which was
de-C-silylated with Bu4NF, providing 15. As a model
experiment, we explored the macrolactone formation
using 15 via an intramolecular sp–sp2 cross-coupling
strategy. Thus, the Pd-catalyzed intramolecular Sono-
gashira coupling of 15 was explored using pyrrolidine
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as a base at room temperature. After 1 h, this coupling
produced two products. Interestingly, these products
were identified to be an endo-TADA adduct 16-endo
and an exo-TADA one 16-exo, which were isolated in
10% and 9% yields, respectively. Neither the Sonogash-
ira coupling product nor other by-products were iso-
lated from the reaction mixture. We consider that the
low yields of 16-endo and 16-exo are mainly due to the
difficulty in the formation of 24-membered intermediate
in the intramolecular cyclization step. On the other
hand, we conclude that the TADA reaction occurred
instantly after the Sonogashira coupling product was
formed. It should be emphasized that the IMDA reac-
tion of 15 was not the first event. This was evidenced
by the fact that the IMDA reaction of 14 started by
heating 14 at 80 �C and completed after 4 days, provid-
ing an approximately 1:2 mixture (1H NMR analysis) of
endo- and exo-adducts (not shown) in a combined yield
of 93%. We then focused our efforts on the synthesis of
substrates 6 (R = SnBu3 or B(OH)2) via the functional-
ization of the acetylene moiety in 15. Despite extensive
efforts,7 however, we could not find efficient conditions
for the synthesis of these terminally metalated olefins
as the substrates for the attempted intramolecular Stille
or Suzuki–Miyaura coupling reaction.
Next, we explored the synthesis of vinylsilane 6
(M = SiMe3) as the substrate for intramolecular Hiyama
cross-coupling.8 The synthesis of 6 was expected to be
achieved by the HWE reaction of 7 and aldehyde 9
with an (E,E,E)-trienyl trimethylsilane moiety. For the
synthesis of 9, we explored the synthesis of pentadienyl
phosphonate 11 as the HWE reaction partner of the pre-
viously reported aldehyde 10.3a The synthesis of 11 was
achieved as shown in Scheme 3. Thus, the LiAlH4 reduc-
tion of commercially available C-silylated propargylic
alcohol 17 provided trans-allylic alcohol 18,9 which
was converted into unsaturated aldehyde 19 with
MnO2.10 The Wittig reaction of 19 with Ph3P = C(Me)-
CO2Et provided the a,b:c,d-unsaturated ester 20. The
diisobutylaluminum hydride (DIBAL-H) reduction of
20 provided pentadienyl alcohol 21 (E:Z = >20:1).
Bromination of 21 with a mixture of CBr4 and Ph3P,
followed by a thermal Arbusov rearrangement of the
resulting bromide 22 with triethyl phosphite, eventually
produced 11.

The HWE olefination of 103a and 11 using potassium
hexamethyldisilazide (KHMDS) as the base provided
(E,E,E)-triene 23 (Scheme 4). Deprotection of the
TBDPS (t-BuPh2Si) group in 23, followed by
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Dess–Martin oxidation11 of the resulting primary alco-
hol 24, provided aldehyde 9. Then, the HWE coupling
of 7 and 9 smoothly provided 6 (M = TMS), the sub-
strate for the intramolecular Hiyama cross-coupling.

As shown in Scheme 5, the Pd-catalyzed intramolecular
Hiyama cross-coupling of 6 was examined in the pres-
ence of semi-catalytic amount of tetrabutylammonium
fluoride (TBAF, four-times addition of each 3 mol %
amount) at 60 �C for 20 h. As a result, two TADA
adducts 25-endo and 25-exo were obtained. The struc-
tures of these two adducts were determined by extensive
1H NMR analysis. Furthermore, one of the adducts,
that is, 25-endo, was identified with a synthetic inter-
mediate in the previous total synthesis of 4.5 Although
the yields of 25-endo and 25-exo were not necessarily
remarkable, neither the intermediary Hiyama cross-
coupling product 5 nor other isolable products were
found in the reaction mixture. We consider that the
rather low yields of the TADA adducts were the result
from the instability of the poly-unsaturated nature of
substrate 6 under the transition-metal-catalyzed reaction
conditions. In fact, a number of high-polar materials
were found in the reaction mixture (TLC monitoring)
during the Hiyama cross-coupling/TADA event. We
could not isolate or identify these products. Compared
to the previous results obtained from the stereoselective
(endo- and p-facial) and high-yielding IMDA reactions
realized in the total synthesis of tubelactomicins,3,5 the
endo/exo-selectivity observed in the Hiyama coupling/
TADA reaction of 6 was low.12 As expected from the
result of the Sonogashira coupling/TADA reaction of
15, however, it should be emphasized that the sequential
intramolecular cyclization reactions of 6 proceeded with
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complete p-facial selectivity to provide the expected two
adducts. The adduct 25-endo was converted into (+)-
tubelactomicin E (4) previously.5 On the other hand,
de-O-benzylidene product 26, prepared from 25-endo,
was selectively tosylated. Deoxygenation of the resulting
primary tosylate 27 with NaBH4 in hot DMSO provided
28,3b from which (+)-tubelactomicin A (1) was synthe-
sized previously.3b

Finally, we were interested in the 24-membered lactone
formation via a ring-closing olefin metathesis (RCM)
approach.13 As summarized in Scheme 6, we synthesized
linear heptaene 31 from the aforementioned vinyl iodide
14. Thus, the Stille coupling of 14 and vinyltributylst-
annane provided conjugated diene 29 in a moderate
yield of 59%. Protodesilylation of the TMS group in
29 provided 30. The hemi-hydrogenation of the triple
bond in 30 was achieved efficiently using a Lindler cata-
lyst to provide 31, the substrate for the attempted RCM
approach. After some experimentation, we found that
the second-generation Grubbs catalyst14 was solely
effective for the RCM of 31,15 which provided the
TADA adducts 25-endo and 25-exo as an approximately
1:1 mixture in a combined yield of 13%. As the case of
the intramolecular Hiyama cross-coupling applied to
6, the initially formed RCM product 5 was not found
in the reaction mixture. The TADA reaction of 5, which
was produced by the RCM of 31, proceeded at a lower
temperature compared to the case of the Hiyama cou-
pling/TADA reaction of 6. Although the p-facial selec-
tivity of the TADA reaction was again complete, the
endo/exo-selectivity was almost the same as the result
obtained from the sequential cyclization achieved using
6. Furthermore, another RCM product corresponding
to 5, which possesses a newly introduced Z-olefin part,
was not found in the reaction mixture. We did not
explore further for the improvement of the yields and
selectivity of this RCM/TADA reaction.

In conclusion, we have accomplished the formal synthe-
ses of tubelactomicins A and E via a TADA approach.
Substrate 5 for the TADA reaction, that is, a highly
functionalized 24-membered macrolactone equipped
with an all-E conjugated tetraene part, was synthesized



Me

MOMO

Me

CO2Me

Me

O O

O O

Ph

MeR

29 R=TMS (59%)
30 R=H (85%)

1) Pd2(dba)3, PPh3,
DMF, 60 ºC

14
2) TBAF, THF

SnBu3

H2, Lindler cat.,
THF

Me

MOMO

Me

CO2Me

Me

O O

O O

Ph

Me

31 (79%)

25-endo

25-exo
+

(13% combined yield;
ca. 1:1 mixture)

2nd generation
Grubbs catalyst
(20 mol% x 2)
CH2Cl2, reflux, 33 h

Scheme 6. The metathesis approach to the TADA adducts.

T. Anzo et al. / Tetrahedron Letters 48 (2007) 8442–8448 8447
by a Hiyama cross-coupling or a ring-closing olefin
metathesis. Furthermore, these 24-membered macrolac-
tone forming reactions triggered off a spontaneous
TADA reaction.
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