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Abstract: Practical synthesis of a new chiral endo-exo cross-conju-
gated cyclohexadienone was achieved, and its synthetic utility was
illustrated by highly exo-b-selective conjugate addition with vari-
ous nucleophiles. Further diastereoselective transformation of the
adduct to an unprecedented 5a-substituted carbaallose is also de-
scribed.
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There are a number of fascinating synthetic targets with a
six-membered carbocyclic skeleton with various func-
tional groups on the stereogenic ring-carbon atoms.1

Among them are 5a-carbapyranoses,2 which named after
their structural similarity to the parent monosaccharides:
the original pyranose ring-oxygen atom is replaced by car-
bon atom. So far, a large range of 5a-carbapyranoses,
which are typically 5a-methylene variants, have been ei-
ther isolated from natural sources or synthesized to unveil
their unique biological functions.2 It is interesting to note
that human cannot distinguish between a pyranose and its
5a-methylene analogue as exemplified by the fact that 5a-
carba-a-D-glucopyranose is felt sweet like a-D-glucopy-
ranose.3 These structural and biologic aspects have moti-
vated us for further modification of the carbapyranoses. In
particular, we envisioned that the carbasugars could enjoy
any extra property by the introduction of a substituent to
the 5a-carbon center, keeping the biological roles of their
parent saccharides intact. To the best of our knowledge,
however, such chiral carbapyranoses with an asymmetric
5a-carbon center have been scarcely scrutinized.4 Thus,
the development of a versatile stereoselective method for
the synthesis of 5a-substituted carbapyranoses should be
significant to accelerate the research on the functional
sugar mimics. We assigned the endo-exo cross-conjugat-
ed cyclohexadienone5 1 to be a potential synthetic build-
ing block, because the regioselective conjugate addition to
the exo-b carbon atom provides a cyclohex-2-enone
framework for further stereoselective functionalizations
to access carbapyranoses with a variety of substituents at
5a-position (Scheme 1). In this paper, we disclose the dia-

stereoselective construction of 1 (R = Bz) and its transfor-
mation into an unprecedented 5a-substituted carbaallose.6

Scheme 1 Chiral endo-exo cross-conjugated cyclohexadienone 1 as
a useful synthetic building block for 5a-substituted carbapyranoses
(*: stereogenic center)

The requisite 1 was synthesized as shown in Scheme 2.
The photooxygenation of 27 in the presence of tetraphe-
nylporphyrin (TPP) as a sensitizer afforded endoperoxide
3 in 45% yield. The relative stereochemistry of 3 was un-
doubtedly determined by X-ray crystallographic analysis
(Figure 1).8 Upon treatment with an excess amount of tri-
ethylamine, the endoperoxide 3 underwent Kornblum–
DeLaMare rearrangement9 to the 4-hydroxycyclohex-2-
enone derivative 4, which was found to be susceptible to
a b-elimination of the benzoyl group under the applied ba-
sic conditions to give the endo-exo cross-conjugated cy-
clohexadienone 5 in excellent yield. The subsequent one-
pot treatment of 5 with benzoyl chloride, triethylamine,
and DMAP gave 1 in 94% yield for the three steps from 3.

We next examined the conjugate addition to 1. With a
higher-order cuprate10 prepared from phenyllithium and
cuprous cyanide, the conjugate addition proceeded in ex-
cellent chemo- and regioselective manners to give the de-
sired exo-b adduct 6a as a single diastereomer in high
chemical yield (Table 1, entry 1). The relative configura-
tion of 6a was determined to be 1R*,2S*,6S* by X-ray
crystallography of a derivative (vide infra, Figure 3). The
diastereoselectivity in the protonation to a dienolate inter-
mediate primarily generated upon the conjugate addition
could be explained by the transition-state model either A
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or B depicted in Figure 2. In the model A, the dienolate lo-
cates the substituents on the two stereogenic ring-carbon
centers in an anti-periplanar conformation so that the pro-
tonation should occur at a quasi-equatorial site to avoid a
1,3-repulsive interaction with the benzoyl group. Alterna-
tively, the model B with a gauche conformation for the
two relevant substituents should account for the protona-
tion at a quasi-axial site from a stereoelectronic effect.11

The conformation of the dienolate is thermodynamically
more stable in A than in B, whereas the axial attack by a
proton source as in B is kinetically preferable to the equa-
torial attack as in A. Other higher-order cuprates were also
examined and those with aromatic ligands such as 2-meth-
oxyphenyl, 1-naphthyl, and 2-naphthyl exhibited similar-
ly excellent regio- and diastereoselectivities (entries 2–4).
Butyl group was also transferred to the exo-methylene in
good yield, though a very small amount of unidentified
byproduct12 accompanied in this case (entry 5). It should
be noted that the undesired endo-b adduct was not detect-
ed in each reaction. That would be partly because the on-
coming nucleophile feels higher steric hindrance at the
endo-b than at the exo-b site. Not only higher-order cu-
prates but also a stabilized carbanion derived from dime-
thyl malonate underwent highly regioselective Michael
addition at the exo-b position of 1 followed by the diaste-
reoselective protonation event to afford 7 (Scheme 3,
left). Corey–Chaykovsky cyclopropanation13 was also ef-
fected with an exo-b-selective manner to provide 8
(Scheme 3, right).

Scheme 2 Synthesis of the endo-exo cross-conjugated cyclo-
hexadienone 1. Reagents and conditions: i) O2 (air), TPP, hn (110 V,
150 W, halogen lamp), CH2Cl2, r.t., 5.5 h; 45%, ii) Et3N, CH2Cl2, r.t.,
19 h; iii) BzCl, Et3N, DMAP, CH2Cl2, r.t., 1.5 h, 94% (2 steps).

Eventually, the synthesis of a new 5a-substituted carbaal-
lose was achieved from 6a (Scheme 4). Thus, osmium-
catalyzed dihydroxylation of 6a afforded a 3.5:1 diastere-
omeric mixture of 9a and 9b. After separation of these di-
astereomers by column chromatography on silica gel, the
major isomer 9a was subjected to the carbonyl reduction
with NaBH4 to give the triol 10 quantitatively as a sole di-
astereomer. A single crystal of 10 was subjected to X-ray
crystallography14 and its relative stereochemistry was un-
ambiguously determined to be 1R*,2R*,3S*,4S*,5S*,6S*
(Figure 3). This also established the stereochemical out-
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Figure 1 An ORTEP diagram for the X-ray structure of 3. Hydro-
gen atoms are omitted for clarity.

Table 1 exo-b-Selective Conjugate Addition to 1 with Higher-
Order Cupratesa

Entry Cuprate (R) Time (min) Product Yield (%)b

1 Ph 15 6ac 91

2 2-MeOC6H4 20 6bc 74

3 1-C10H7 20 6cc 62

4 2-C10H7 20 6dc 80

5 n-Bu 15 6ed 77

a Reaction was carried out with a 1:1 molar ratio of 1 and 
R2CuCN·Li2.
b Isolated yield.
c Diastereomeric byproduct was not detected by 1H NMR analysis.
d Accompanied by a small amount (<5%) of unidentified byproduct 
with a similar pattern of 1H NMR spectrum to that of 6e.

Figure 2 Transition-state models A and B accounting for the obser-
ved diastereoselectivity in the protonation of a dienolate intermediate
generated upon the conjugate addition to 1.
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Scheme 3 Michael addition and Corey–Chaykovsky cyclopropana-
tion. Reagents and conditions: i) dimethyl malonate, NaH, THF,
–78 °C, 3 h, 67%; ii) trimethylsulfonium iodide, NaH, THF–DMSO,
r.t., 4.5 h, 48%.
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come in the conjugate addition–protonation sequence on
the cross-conjugated dienone 1 (Figure 2). Methanolysis
of the benzoyl groups of 10 with sodium methoxide in
methanol followed by neutralization with an acidic resin
afforded a 5a-carba-a-allopyranose 11 in quantitative
yield.

Scheme 4 Synthesis of a 5a-carba-a-allopyranose 11 from 6a.
Reagents and conditions: i) K2OsO4·2H2O, NMO, DABCO, acetone–
H2O, r.t., 3 h, 96%, 9a/9b (3.5:1); ii) NaBH4, MeOH, –78 °C, 1 h,
81%; iii) NaOMe, MeOH, r.t., 2 h; iv) Dowex HCR W-2, 99% (2
steps).

Figure 3 An ORTEP diagram for the X-ray structure of 10. Hydro-
gen atoms and solvate molecule are omitted for clarity.

In summary, we were able to construct a novel endo-exo
cross-conjugated cyclohexadienone 1, which was demon-
strated to undergo regioselective conjugate addition at the
exo-b position with various nucleophiles followed by
highly diastereoselective protonation of a dienolate inter-
mediate. Furthermore, one of the adducts, 6a, was suc-
cessfully converted to the unprecedented carbaallose
derivative 11 with a chiral 5a-carbon center, which will be
subjected to screenings for the assessment of its biological
activities. Asymmetric synthesis of the optically active
endo-exo cross-conjugated cyclohexadienones15 and their
further synthetic applications are also currently under way
in our laboratory.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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