Organocatalysis

Enantioselective Phase-Transfer Catalysis: Synthesis of Pyrazolines**

Olivier Mahé, Isabelle Dez, Vincent Levacher, and Jean-François Brière*

The development of asymmetric catalytic reactions, as costeffective and environmentally friendly methodologies, is a response to the increased demand of pharmaceutically relevant chiral aza-heterocycles.^[1] In this context, the Δ^2 pyrazolinyl platform is the core structure of many bioactive ingredients, and among them are the recurring 3,5-diarylpyrazoline architectures **3** (Scheme 1),^[2] which have a polar group on N1.^[3] However, an efficient enantioselective synthesis of this type of 4,5-dihydropyrazoles remains elusive.

Scheme 1. Organocatalytic strategy using chiral ammonium/amide ion pairs.

The first catalytic enantioselective construction of pyrazolines, which was reported in 2000, proceeds through 1,3dipolar cycloaddition reactions of acrylamides by means of Lewis acidic magnesium complexes.^[4] The subsequently developed asymmetric approaches were dominated by organometallic strategies which encompass [2+3] cycloadditions of either diazoalkane dipoles^[5] or nitrile imine dipole precursors, as well as others.^[6,7] Alternatively, Kanemasa and Yanagita described a metal-promoted aza-Michael cyclocondensation cascade using electron-rich *N*-arylhydrazines to give exclusively 3-pyridyl-4-aryl pyrazolines, albeit with moderate enantioselectivity.^[8] This example, to our knowledge, constitutes the only attempt to construct nonracemic

[*] O. Mahé, Dr. V. Levacher, Dr. J.-F. Brière
CNRS UMR COBRA, INSA et Université de Rouen, FR 3038
IRCOF (Research Institute in Fine Organic Chemistry)
rue Tesnière, BP 08, 76131 Mont Saint Aignan (France)
Fax: (+33) 2-3552-2962
E-mail: jean-francois.briere@insa-rouen.fr
Dr. I. Dez
UMR CNRS 6507, ENSICaen-Université de Caen, FR3038
Laboratoire de Chimie Moléculaire et Thio-organique
Caen (France)

- [**] We gratefully acknowledge financial support from the Région Haute-Normandie and the CRUNCH network (Centre de Recherche Universitaire Normand de Chimie), as well as the Ministère de la Recherche and CNRS (Centre National de la Recherche Scientifique).
 - Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201002485.

3,5-diaryl pyrazolines. The organocatalytic asymmetric synthesis of *N*-aryl pyrazolines was pioneered by List and Müller by making use of an elegant 6π electrocyclization.^[9] This recent achievement paves the way for the development of original transition-metal-free synthetic strategies that are suited to the elaboration of pharmaceutically relevant chiral heterocycles.

To provide efficient access to the chiral nonracemic 3,5diarylpyrazoline 3 (Scheme 1), bearing a polar group on N1 [usually an electron-withdrawing group (EWG)], we envisaged a domino aza-Michael addition/cyclocondensation reaction of electron-poor hydrazine anions with chalcones catalyzed by a chiral quaternary ammonium salt.^[10] We assumed that an irreversible (nonracemizing) conjugate addition of deprotonated acylhydrazines would be secured by the subsequent imine bond formation.^[11] However, the formation of an effective chiral ion pair between an amide anion and an ammonium salt through cation exchange (M^+/R_4N^+) remained questionable, but was required to prevent a racemic background process. Thus far, phase-transfer catalysis (PTC) has elicited robust organocatalytic strategies for the asymmetric construction of C-C bonds from C anions and, to a lesser extent, C-X bonds from anionic O and S nucleophiles.^[12] Nonetheless, the examples of asymmetric PTC approaches for C-N bond formation using anionic Nnucleophilic species are rare.^[10,12,13] In the 1970s, Juliá et al. pioneered the kinetic resolution of chiral tertiary alkyl bromides by using potassium phthalimide nucleophiles under the influence of cinchonium-derived alkaloids albeit with modest selectivities.^[14] Later in 1996, preliminary investigations from Prabhakar and co-workers triggered a series of studies dealing with the asymmetric aziridination reactions of enones by O-substituted hydroxylamide anions,^[15a-d] and then later extended to N-chloro-N-sodio carbamate.^[15e] Recently, a useful intramolecular enantioselective conjugate addition of deprotonated indoles to an acrylate was achieved under PTC conditions.^[16] We describe herein an unprecedented asymmetric synthesis of pyrazolines under PTC reaction conditions by making use of the $R_2 N^- / R_4 N^+$ ion pairing mode of activation.^[17]

We first carried out a set of reactions between chalcone (2a) and *N*-tert-butyloxycarbonyl hydrazine 1a (1.1 equiv) in the presence of potassium carbonate (solid–liquid phase-transfer conditions) and various commercially or easily available chiral ammonium salts derived from cheap cinchona alkaloids (Table 1).^[12c] Pleasingly, 10 mol% of *N*-benzyl quininium 4a furnished (*S*)-(–)-pyrazoline 3a with a promising 67% *ee* albeit in 31% yield. Subsequent attempts revealed that the presence of water (liquid–liquid phase-transfer conditions with 4a; Table 1 < xtabr1, entry 2) and the use of cinchonidinium salt 4b were detrimental to the enantiomeric excess. Interestingly, the introduction of an

View this journal online at wileyonlinelibrary.com

7072

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 1: Optimization of the reaction.

tBuO 1a (1. Ph 2a		IH ₂ v) K ₂ (Ph or C:	4 (1 tolu CO ₃ (1.1 S ₂ CO ₃ (10 mol%) ene, 24 h 3 equiv), 40 °C 1.3 equiv), 20 °C	$0 \xrightarrow{V} 0$ h \xrightarrow{N \cdot N} (S)-(-)-3a		
Entry	4	R ³	R ⁴	Ar	Base/T [°C]	Yield [%] ^[a]	ee [%] ^[b]
1	4a	OMe	н	Ph	K ₂ CO ₃ /40	31	67
2	4a	OMe	Н	Ph	K ₂ CO ₃ /40	20 ^[c]	57
3	4b	Н	Н	Ph	K ₂ CO ₃ /40	11	48
4	4c	OMe	allyl	Ph	K ₂ CO ₃ /40	17	20 (<i>R</i>) ^[d]
5	4a	OMe	Н	Ph	Cs ₂ CO ₃ /20	55	73
6	4d	OMe	Н	anthracenyl	Cs ₂ CO ₃ /20	15	12 (<i>R</i>) ^[d]
7	4e	OMe	Н	4-MeOC ₆ H ₄	Cs ₂ CO ₃ /20	58	56
8	4 f	OMe	Н	$4-CF_3C_6H_4$	Cs ₂ CO ₃ /20	38	54
9	4g	OMe	Н	4-FC ₆ H ₄	Cs ₂ CO ₃ /20	46	61
10	4h	OMe	Н	2-FC ₆ H ₄	Cs ₂ CO ₃ /20	72	79
11	4i	OMe	Н	$2-MeOC_6H_4$	Cs ₂ CO ₃ /20	80	80
12	4j	OMe	Н	$2-MeC_6H_4$	Cs ₂ CO ₃ /20	54	68
13	4k	OMe	Н	2-pyridyl	Cs ₂ CO ₃ /20	48	24
14	41	OMe	Н	2-pyridyl-N-oxide	Cs ₂ CO ₃ /20	84	65

[a] Yield of pyrazine **3a** determined by NMR methods using an internal standard. [b] Determined by HPLC analysis using a chiral stationary phase. [c] Toluene/H₂O (75:25) used as solvent. [d] Absolute configuration determined by comparison to analogue **6a**; see Ref. [21].

allylic functional group on the alcohol at C9 (4c) or using the bulkier anthracenyl derivative 4d led to an reversal of the enantioselectivity and low-yielding reactions. Apparently, the suitable organization of the amide/ammonium ion pair that leads to efficient chirality transfer during the C-N bond formation requires the presence of a free alcohol at C9. Futhermore, the steric hindrance at the benzylic moiety of the quinuclidinium structure appeared to be a limiting structural feature as exemplified by the catalyst 4d. At this stage, it was found that the use of cesium carbonate instead of potassium carbonate improved the yields (from 31 % to 55 % for catalyst 4a) while allowing the lowering of the reaction temperature from 40 °C to 20 °C (67 % to 73 % ee for catalyst 4a). Then, we turned our attention to electronic effects and tested catalysts having para-substituted benzylic rings (4e-4g), but disappointing results were obtained. Recently, Jew, Park, and coworkers pioneered ortho-substituted benzyl cinchona derivatives such as **4h** as potent catalysts for glycine alkylation.^[18] Such catalysts were successfully exploited by Ricci and coworkers, who used ortho-methoxy benzyl ammonium salts such as **4i** in several elegant PTC processes.^[19] In our hands, the enantiomeric excesses were improved from 73% ee with quininium 4a to 79% ee with ortho-fluorobenzyl compound 4h, and a faster reaction was achieved such that pyrazoline 3a was isolated in 72% yield after 24 hours. The best results (80% ee) were obtained with quininium salt 4i, which possesses a free alcohol and an ortho-methoxybenzyl motif. In this regard, structure-activity relationships were examined and revealed that the 2-methyl-substituted catalyst 4j furnished only 68% ee, thereby excluding a simple steric influence on selectivity. The comparison of the activity between the 2-pyridyl 4k and 2-pyridyl-N-oxide 4l derivatives shows that a polar functional group at the *ortho* position of the benzylic substructure is required; this polar group (e.g., *N*-oxide) is likely to accept hydrogen bonds which in turn results in improved yields and *ee* values. Nevertheless, catalysts **4k** and **4l** containing a pyridine ring resulted in a less enantio-selective reaction (see the Supporting Information for further details).^[18]

To investigate the scope of the reaction, we examined the EWG on the hydrazine $(R^1CONHNH_2)$ in the presence of catalyst **4a** (Table 2). Although the *N*-benzoyl hydrazine

Entry	Cat.	R ¹	Solvent/ <i>T</i> [°C]	Yield [%] ^[b]	ee [%] ^[c]
1	4a	Ph	toluene/RT	0	_
2	4 a	Me	toluene/RT	86	9
3	4a	OEt	toluene/RT	74	26
4	4 a	OBn	toluene/RT	60	26
5	4 a	OtBu	toluene/RT	55	73 (S)
6	4 a	OtBu	toluene/0	55	78 (S)
7	4a	OtBu	toluene/-20	45	23 (S)
8	4i	OtBu	THF/0	80	92 (S)
9	4 m	OtBu	THF/0	78	92 (R)
10 ^[d]	4i	OtBu	THF/0	77	93 (S) ^[e]

[a] Reaction conditions: chalcone **2a** (0.5 mmol), hydrazine **1** (1.1 equiv), Cs_2CO_3 (1.3 equiv), and 10 mol% of catalyst **4** for 24 h. [b] Yield of pyrazoline **3a** determined by NMR methods using an internal standard. [c] Determined by HPLC analysis using a chiral stationary phase. [d] Carried out with chalcone **2a** (2 mmol), 2 mol% of catalyst **4i** and 0.5 equivalents of Cs_2CO_3 for 87 h giving 70% yield of the isolated product after column chromatography (43% yield in 24 h). [e] Greater than 99% *ee* after one recrystallization in EtOAc/petroleum ether (1:3). Bn = benzyl.

(Table 2, entry 1) did not yield the pyrazoline product **3a**, the *N*-acetyl derivative (Table 2, entry 2) smoothly reacted with chalcone **2a** to give the corresponding pyrazoline in 86% yield, but low selectivity was measured. The bulky *N*-Boc hydrazine was the only carbamate derivative (Table 2, entries 3–5) to achieve a significant *ee* value in its reaction, thereby showing the subtle influence of both the steric hindrance and pK_a value of the hydrazine nucleophiles upon these asymmetric aza-Michael reactions. The enantiomeric excesses were slightly improved at 0°C (Table 2, entry 6), but a lower temperature was detrimental to the reaction (Table 2, entry 7). Consequently, by using the more competent *ortho*-methoxy quininium catalyst **4i** (see the Supporting Information) in THF at 0°C, the efficient formation of pyrazoline **3a** was observed in 80% yield with 92% *ee* (Table 2, entry 8).

Communications

Most importantly, the pseudo-enantiomeric effect was fully countered by means of using 10% of the quinidinium catalyst **4m** (Table 2, entry 9), which allowed the construction of (*R*)-**3a**. We also demonstrated that on a 2 mmol scale only 0.5 equivalents of Cs_2CO_3 and 2 mol% of catalyst **4i** (Table 2, entry 10) were needed to maintain the high enantioselectivity (93% *ee*), but the reaction required 87 hours to reach completion. As a practical issue for the synthesis of chiral drugs, a virtually enantiopure pyrazoline **3a** could be obtained after one recrystallization (Table 2, entry 10).

We evaluated these user-friendly and cost-effective organocatalytic conditions by applying them to reactions of chalcone derivatives (2) with a quasi-stoichiometric amount of 1a (Table 3). Pyrazolines 3 having various aryl (Table 3,

Table 3: Scope of the enantioselective synthesis of pyrazolines.^[a]

	<i>t</i> BuO N ^N 1a H ⁺ + Ar ¹ 2	$ \begin{array}{c} H_2 \\ O \\ $	4i (10 mol%) or K₃PO₄ (1.3 equ HF, 24 h, 0 °C	$tBuO \xrightarrow{O} N^{-}N$ iv) $Ar^{1} \xrightarrow{V} 1$	Ar ²
Entry	Base	Ar ¹	Ar ²	Yield [%] ^[b]	ee [%] ^{[c}
1	Cs ₂ CO ₃	Ph	Ph	77	92 (-)
2	Cs ₂ CO ₃	Ph	4-MeOC ₆ H ₄	71	90 (-)
3	Cs ₂ CO ₃	Ph	$4-FC_6H_4$	72	90 (-)
4	K₃PO₄	Ph	$4-FC_6H_4$	62	92 (-)
5	Cs ₂ CO ₃	Ph	$2-MeOC_6H_4$	89	92 (-)
6	K₃PO₄	Ph	$2-MeOC_6H_4$	52	94 (-)
7	Cs ₂ CO ₃	Ph	2-thienyl	66	87 (-)
8	K₃PO₄	Ph	2-thienyl	60	91 (-)
9	K₃PO₄	Ph	3,4-ClC ₆ H ₃	40 (62) ^[d]	92 (-)
10	K₃PO₄	$4-MeOC_6H_4$	Ph	60	89 (+)
11	K₃PO₄	$4-CIC_6H_4$	Ph	70	88 (-)
12	K₃PO₄	2-MeC ₆ H₄	Ph	62	89 (-)
13	K₃PO₄	3-MeOC ₆ H ₄	Ph	61	91 (-)
14	K_3PO_4	2-thienyl	Ph	46	78 (-)

[a] Reactions were performed on a 0.5 mmol scale of chalcones 1 with 1.1 equivalent of hydrazine 1a. [b] Yield of isolated product after column chromatography. [c] Determined by HPLC analysis using a chiral stationary phase. [d] Yield determined by NMR analysis of the crude reaction mixture using an internal standard.

entries 1–6 and 9) and heterocyclic (Table 3, entries 7 and 8) substituents at C3 were formed with more than 90% *ee.* As a general trend, it was found that K_3PO_4 slightly improved the enantiomeric excesses relative to those obtained with Cs_2CO_3 (Table 3, entries 4, 6, and 8), but the reactions were slower and the yields were lower after the same reaction time (24 hours). The *ortho, meta,* and *para* substitution on the aryl rings at C5 were well tolerated even though a slight drop in the *ee* values was measured (Table 3, entries 10–13). The thienyl heterocycle led to a lower enantiomeric excess (Table 3, entry 14).^[20]

The use of **1a** was key to the success of this enantioselective synthesis of the 3,5-diaryl pyrazolines, but the methodology is restricted to the formation of *N*-Boc derivatives. Nevertheless, we achieved a practical one-pot protectinggroup exchange by making use of the acid lability of the *N*-Boc group, thereby extending the scope of this methodology (Table 4). A straightforward construction of **6a-c** (Table 4, Table 4: One-pot protecting-group exchange.

[a] Yield of product isolated after column chromatography. [b] Determined by HPLC analysis using a chiral stationary phase. [c] Determined by ¹H NMR analysis. Bz = benzoyl, Ts = 4-toluenesulfonyl.

entries 1–3) and diastereoisomeric **6d** (Table 4, entry 4) was realized, without any racemization, starting from the enantioenriched pyrazoline **3a** (see Table 2, entry 10). Considering the usual chemical and configurational instability of 1*H*-pyrazolines through oxidative degradation pathways,^[11] this achievement is noteworthy. The formation of an ammonium intermediate **5** is likely and prevents any decomposition. Pleasingly, the resulting product **6a** (Table 4, entry 1) was crystalline and the absolute configuration at C5 of the pyrazoline ring was determined to be *S* as confirmed by X-ray diffraction methods.^[21]

With the *ortho*-fluorobenzyl ammonium catalyst **4h** Jew, Park, and co-workers demonstrated, by using X-ray crystal diffraction, that a molecule of water was bound between the oxygen atom on C9 and the *ortho*-fluorine atom on the benzyl moiety.^[18] The authors proposed that preorganization of the obtained complex leads to improvement of the chiral induction. In our case, however, hydrated conditions yielded a drop in the *ee* values.^[22] We suppose instead that both OH and OMe functional groups of quininium catalyst **4i** are synergistically involved in a hydrogen-bond network around the nucleophilic hydrazine anion of **1a**, thus providing a useful chiral platform for the selection of the prochiral enone faces en route to an effective asymmetric synthesis of pyrazolines (see the Supporting Information).^[23] This hypothesis is currently under investigation.

In conclusion, we developed an original and straightforward enantioselective synthesis of 3,5-diaryl pyrazolines, biorelevant aza-heterocycles, by using phase-transfer organometallic methodology. The discovery that an *N-ortho*methoxybenzyl quininium salt leads to a useful chiral ammonium/amide ion pair from *N*-acylhydrazines in this process has prompted investigations of its utility for other asymmetric transformations.

Received: April 26, 2010 Revised: June 23, 2010 Published online: August 16, 2010

Keywords: asymmetric synthesis · heterocycles · Michael addition · organocatalysis · phase-transfer catalysis

- a) J. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org. Biomol. Chem. 2006, 4, 2337; b) V. Farina, J. T. Reeves, C. H. Senanayake, J. J. Song, Chem. Rev. 2006, 106, 2734.
- [2] Reviews on pyrazolines: a) A. Lévai, J. Heterocycl. Chem. 2002, 39, 1; b) S. Kumar, S. Bawa, S. Drahu, R. Kumar, H. Gupta, Recent Pat. Anti-Cancer Drug Discovery 2009, 4, 154; c) M. Kissane, A. R. Maguire, Chem. Soc. Rev. 2010, 39, 845; d) C.-H. Küchenthal, W. Maison, Synthesis 2010, 5, 719.
- [3] Representative bioactive 3,5-diarylpyrazolines: a) J. R. Goodell, F. Puig-Basagoiti, B. M. Forshey, P.-Y. Shi, D. M. Ferguson, J. Med. Chem. 2006, 49, 2127; b) P.-L. Zhao, F. Wang, M.-Z. Zhang, Z.-M. Liu, W. Huang, G.-F. Yang, J. Agric. Food Chem. 2008, 56, 10767; c) C. D. Cox, M. J. Breslin, B. J. Mariano, P. J. Coleman, C. A. Buser, E. S. Walsh, K. Hamilton, H. E. Huber, N. E. Kohl, M. Torrent, Y. Yan, L. C. Kuod, G. D. Hartman, Bioorg. Med. Chem. Lett. 2005, 15, 2041; d) F. Chimenti, A. Bolasco, F. Manna, D. Secci, P. Chimenti, O. Befani, P. Turini, V. Giovannini, B. Mondovi, R. Cirilli, F. La Torre, J. Med. Chem. 2004, 47, 2071; e) A. Sahoo, S. Yabanoglu, B. N. Sinha, G. Ucar, A. Basu, V. Jayaprakash, Bioorg. Med. Chem. Lett. 2010, 20, 132.
- [4] S. Kanemasa, T. Kanai, J. Am. Chem. Soc. 2000, 122, 10710 and references cited therein for previous related diastereoselective methodologies. For preliminary discussions, see: K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863.
- [5] [2+3] cycloadditions with diazoalkanes: a) T. Kano, T. Hashimoto, K. Maruoka, *J. Am. Chem. Soc.* **2006**, *128*, 2174; b) M. P. Sibi, L. M. Standley, T. Soeta, Org. Lett. **2007**, *9*, 1553; c) L. Gao, G.-S. Hwang, M. Y. Lee, D. H. Ryu, Chem. Commun. **2009**, 5460.
- [6] [2+3] cycloadditions with nitrilimines: a) M. P. Sibi, L. M. Stanley, C. P. Jasperse, J. Am. Chem. Soc. 2005, 127, 8276;
 b) M. P. Sibi, L. M. Standley, T. Soeta, Adv. Synth. Catal. 2006, 348, 2371.
- [7] [2+3] cycloadditions of hydrazones: Y. Yamashita, S. Kobayashi, J. Am. Chem. Soc. 2004, 126, 11279.
- [8] a) H. Yanagita, S. Kanemasa, *Heterocycles* 2007, *71*, 699; b) for the first catalytic asymmetric aza-Michael reactions of hydrazines to afford pyrazolidinones, see: M. P. Sibi, T. Soeta, *J. Am. Chem. Soc.* 2007, *129*, 4522. For an alternative use of hydrazones in aza-Michael reactions, see: c) D. Perdicchia, K. A. Jørgensen, *J. Org. Chem.* 2007, *72*, 3565; d) S. Gogoi, C.-G. Zhao, D. Ding, *Org. Lett.* 2009, *11*, 2249.
- [9] S. Müller, B. List, Angew. Chem. 2009, 121, 10160; Angew. Chem. Int. Ed. 2009, 48, 9975.
- [10] Review on organocatalytic aza-Michael reactions: a) D. Enders, C. Wang, J. X. Liebich, *Chem. Eur. J.* 2009, *15*, 11058; b) P. R. Krishna, A. Sreeshailam, R. Srinivas, *Tetrahedron* 2009, *65*, 9657.
- [11] For previous studies from our laboratory using guanidines in an aza-Michael mechanism for racemic products, see: O. Mahé, D. Frath, I. Dez, F. Marsais, V. Levacher, J.-F. Brière, Org. Biomol. Chem. 2009, 7, 3648, and references cited therein.
- [12] Reviews on PTC: a) T. Ooi, K. Maruoka, Angew. Chem. 2007, 119, 4300; Angew. Chem. Int. Ed. 2007, 46, 4222; b) K. Maruoka, T. Hashimoto, Chem. Rev. 2007, 107, 5656; c) S.-S. Jew, H.-G. Park, Chem. Commun. 2009, 7090.
- [13] An example of alternative C–N bond formation with electrophilic amine reagents under PTC: R. He, X. Wang, T. Hashi-

moto, K. Maruoka, *Angew. Chem.* **2008**, *120*, 9608; *Angew. Chem. Int. Ed.* **2008**, *47*, 9466. For examples of racemic PTC aza-Michael reaction, see: a) L. W. Xu, L. Li, C.-G. Xia, S.-L. Zhou, J.-W. Li, X.-X. Hu, *Synlett* **2003**, 2337; b) J. Lee, M.-H. Kim, S.-S. Jew, H.-G. Park, B.-S. Jeong, *Chem. Commun.* **2008**, 1932; c) M. Ménard, V. Dalla, *Synlett* **2005**, 95.

- [14] S. Juliá, A. Ginebreda, J. Guixer, A. Tomás, *Tetrahedron Lett.* 1980, 21, 3709, and references cited therein.
- [15] a) J. Aires-de-Sousa, A. M. Lobo, S. Prabhakar, *Tetrahedron Lett.* 1996, *37*, 3183; b) J. Aires-de-Sousa, S. Prabhakar, A. M. Lobo, A. M. Rosa, M. J. S. Gomes, M. C. Corvo, D. J. Williams, A. J. P. White, *Tetrahedron: Asymmetry* 2001, *12*, 3349; c) R. Fioravanti, M. G. Mascia, L. Pellacani, P. A. Tardella, *Tetrahedron* 2004, *60*, 8073; d) E. Murugan, A. Siva, *Synthesis* 2005, *12*, 2022; e) S. Minakata, Y. Murakami, R. Tsuruoka, S. Kitanaka, M. Komatsu, *Chem. Commun.* 2008, 6363. Except in reference [15c] the creation of a stereogenic center occurred during the ring-closing step of the aziridination reaction so that a chiral enolate/ammonium ion pair is involved during the stereoselective event instead of an amide/ammonium one.
- [16] a) M. Bandini, A. Eichholzer, M. Tragni, A. Umani-Ronchi, *Angew. Chem.* **2008**, *120*, 3282; *Angew. Chem. Int. Ed.* **2008**, *47*, 3238.
- [17] Selected review on organocatalysis: a) Special issue on organocatalysis: B. List, *Chem. Rev.* 2007, 107, 5413; b) *Enantioselective Organocatalysis* (Ed.: P. I. Dalko), Wiley-VCH, Weinheim, 2007; c) S. Bertelsen, K. A. Jørgensen, *Chem. Soc. Rev.* 2009, 38, 2178, and references cited therein.
- [18] M.-S. Yoo, B.-S. Jeong, J.-H. Lee, H.-G. Park, S.-S. Jew, *Org. Lett.* 2005, 7, 1129, and references cited therein.
- [19] a) O. Marianacci, G. Micheletti, L. Bernardi, F. Fini, M. Fochi, D. Pettersen, V. Sgarzani, A. Ricci, *Chem. Eur. J.* 2007, *13*, 8338;
 b) R. D. Momo, F. Fini, L. Bernardi, A. Ricci, *Adv. Synth. Catal.* 2009, *351*, 2283, and references cited therein.
- [20] The present methodology did not furnish pyrazoline derivatives from aliphatic ketones. For instance, the *trans*-1-phenyl-2-buten-1-one mainly dimerized and gave a little of the aza-Michael product resulting from the conjugate addition of the primary amine of the *tert*-butylcarbazate. For precedent, see: F.-Y. Zhang, E.-J. Corey, *Org. Lett.* **2004**, *6*, 3397.
- [21] CCDC 773701 contains the supplementary crystallographic data of pyrazoline (S)-(-)-6a for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The absolute configurations of the remaining pyrazolines as *levo* (-) isomer were assigned (S) by analogy to 6a. The only one exception to this rule is 5-(4-methoxyphenyl)-3-phenyl-pyrazoline (Table 2, entry 10).
- [22] The ortho-fluorobenzyl catalyst 4h with K₂CO₃ at 40 °C gave pyrazoline 3a in 72 % ee in toluene and 57 % ee in a mixture of toluene/H₂O (75:25).
- [23] For insight into role of the hydrogen bonds with ammonium PTC, see: E. Gomez-Bengoa, A. Linden, R. López, I. Múgica-Mendiola, M. Oiarbide, C. Palomo, J. Am. Chem. Soc. 2008, 130, 7955.