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A novel and simple synthetic route for a dibenzo-7-silanor-
bornadiene derivative has been developed. The extremely
hindered chlorosilane bearing 9,10-dihydroanthryl group,
TbtRSiHCl (Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl,
R = 9,10-dihydroanthryl) could be quantitatively converted into
the corresponding dibenzo-7-silanorbornadiene 1 by the reaction
with LDA. The molecular structure of 1 was revealed by the
spectroscopic and X-ray crystallographic analyses.

The chemistry of 7-silanorbornadienes has attracted much
attention because of their strained structures and unique proper-
ties.1–3 In addition, 7-silanorbornadienes are important species
as a precursor of a silylene, since they are known to undergo
thermal and photochemical dissociation to give the correspond-
ing silylene and aromatic counterpart via retro [1 + 4] peri
cyclic reaction.3 Particularly, a 7-hydro-7-silanorbornadiene de-
rivative has been of great interest as a precursor of not only a hy-
drosilylene,4 which is an important but unprecedented species,
but also a functionalized 7-silanorbornadiene derivative at 7-
position.1b,5 However, the synthesis of stable 7-silanorborna-
dienes are somewhat troublesome, since they should be conven-
tionally achieved by the use of a highly reactive species, such as
a transient silylene or a benzyne, with an excess amount of trap-
ping reagents such as anthracene derivatives or siloles.6 On the
other hand, we have been interested in the synthesis and isolation
of unprecedented low-coordinated species of heavier group 14
elements by taking advantage of kinetic stabilization. Recently,
we have chosen the kinetically stabilized hydrosilene 3 as a
target molecule7 and examined the dehydrochlorination of the
overcrowded chlorosilane 2 substituted by an extremely bulky
Tbt group. Unexpectedly, however, the reaction of 2 with
lithium diisopropylamide (LDA) as a base resulted in the quan-
titative formation of dibenzo-7-silanorbornadiene 1, the structur-
al isomer of 3. We report here the synthesis and structural char-
acterization of the new dibenzo-7-silanorbornadiene derivative 1
together with the mechanistic elucidation using theoretical cal-
culations for the unexpected reaction of 2 with LDA giving 1.

Chlorosilane 2 was prepared as a stable crystalline com-

pound by the reaction of TbtSiHCl2 with 9,10-dihydroanthryl-
lithium, which was generated by the reported procedure.8 Treat-
ment of 2 with LDA (1.5 equiv.) in THF at �40 �C afforded di-
benzo-7-hydro-7-silanorbornadiene 1 quantitatively (Scheme 1).
The structure of 1 was definitely determined based on the spec-
troscopic and X-ray crystallographic analyses.9 In the 29Si and
1HNMR spectra of 1, characteristic signals corresponding to
the central silicon atom and the hydrogen atom at the 7-position
are observed at �Si ¼ 35:6 and �H ¼ 4:83 with the coupling con-
stant 1JSiH ¼ 207Hz. These spectral features of 1 are similar to
those of previously reported 7-hydro-7-silanorbornadienes.1b,5

The unexpected formation of 1 in this reaction should be
worthy of note as a novel synthetic route for a dibenzo-7-silanor-
bornadiene. It can be considered that 1 is formed by the initial
deprotonation of Ha (Scheme 2) of 2 followed by the simple
SN2 reaction at the central silicon atom (path A). If Hb proton
was abstracted in the initial stage of the reaction of 2 with
LDA, silene 3 would be generated (path B). Theoretical calcula-
tions for the model compounds, 5–8, which have a 2,6-dimethyl-
phenyl (Dmp) group instead of a Tbt group, indicate that the Hb

proton has slightly higher acidity than that of the Ha proton prob-
ably due to the � effect of a silicon atom (6b is more stable than
6a by ca. 1.3 kcal/mol).10 In addition, theoretical calculations
for the model reactions, i.e., the reaction of 5with NH2Li leading
to the formation of 7-silanorbornadiene 7 or hydrosilene 8 to-
gether with NH3 and LiCl, indicate that the formation of 7 is
an exothermic reaction of ca. 4 kcal/mol, but that of 8 is an en-
dothermic reaction of 16 kcal/mol. That is, the heat of formation
of 7 should sufficiently make up for the unfavorable deprotona-
tion at 10-position (Ha) of 2. Taking into consideration of
these results, the considerable steric hindrance around the central
silicon atom should be an indispensable qualification for the gen-
eration of a dibenzo-7-silanorbornadiene to prevent deprotona-
tion of the � proton of the central silicon atom. It can be conclud-
ed that the quantitative formation of dibenzo-7-silanorborna-
diene 1 in the reaction of 2 with LDA is most likely due to the
kinetic effect of the extremely bulky Tbt group.11
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Although a 7-hydro-7-silanorbornadiene skeleton has been
already structurally characterized so far,6 we found unique
structural features of 1. The structural parameters of 1 revealed
by X-ray crystallographic (Figure 1a) analysis are also similar to
those of the previously reported dibenzo-7-silanorbornadiene
(9),6d,12 which has two Dmp groups on the silicon atom at 7-
position. Interestingly, dihedral angles �1 (Figure 1b) of the di-
benzo-7-silanorbornadiene moiety of 1 is smaller than �2 despite
of the steric repulsion due to the very bulky Tbt group, while 9
shows a symmetric structure as expected (the corresponding �1
and �2 are almost the same values in 9). Although the reason
is unclear at present, similar tendencies are found in the theoret-
ically optimized structural parameters of the less hindered model
compound 7,10 indicating that the smaller �1 values and the larg-
er �2 values observed in 1may not be due to the steric reason but
to somewhat attractive interaction between the Tbt group and the
aromatic moiety. On the other hand, �1 is larger than �2 in 1
(Figure 1b) most likely due to the steric repulsion between the
bulky Tbt group and the dibenzo-7-silanorbornadiene moiety.

When the C6D6 solution of 1 was irradiated by the medium-
or low-pressure Hg lamp in the presence of 2,3-dimethyl-1,3-
butadiene (DMB) at room temperature, [1 + 4]-cycloadduct
11 was obtained in 36 or 50% yield, respectively, together with
anthracene and/or anthracene-photodimer, indicating the photo-
chemical generation of hydrosilylene 10 (Scheme 3).9,13 Thus,
7-hydro-dibenzo-7-silanorbornadiene 1 was proved to be a good
precursor of the corresponding hydrosilylene 10.
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