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Disilacycloalkadienes with bridged halophenylene rings
have been successfully synthesized via ring-closing metathesis
reactions. Molecular structures of these macrocycles were fully
characterized by NMR spectroscopies and X-ray crystallogra-
phy. The Sonogashira coupling reactions of the macrocycles
with phenylacetylene did not proceed probably owing to severe
steric hindrance during the reactions.

Macrocyclic compounds with bridged �-electronic systems
are of particular interest, because they are expected to have
unique functions of molecular rotors as a class of molecular
machines.1 However, very few such macrocyclic systems have
been synthesized so far.2 Several strategies for the synthesis of
the ring systems 1 are envisaged as shown in Scheme 1.

Method a requires the reactions at four sites to make two
rings and hence the yield is expected to be low. Actually, phen-
ylene-bridged polysilaalkane macrocycles 2a and 2b (Chart 1)
were synthesized using method a but in very low yields
(<4%).2 Method b is a double cyclization and has often been ef-
fective to construct the ring systems. A molecular turnstile 33

was synthesized using method b. To the best of our knowledge,
method c has never been utilized for the synthesis of the ring
system.4

Recent success of the synthesis of 4 and related bicyclic

compounds5 using the ring-closing metathesis (RCM)6 for meth-
od b has encouraged us to utilize RCM for the synthesis of phen-
ylene-bridged disilacycloalkanes 6a and 6b.

The RCM of 1,4-bis[di-!-hexenyl(methyl)silyl]benzene
derivatives 5a and 5b in the presence of a Grubbs’ catalyst in di-
chloromethane afforded the corresponding phenylene-bridged
macrocycles 6a and 6b as colorless solids in 32 and 22% isolated
yields, respectively (Scheme 2).7

Among six possible geometrical isomers of 6a (or 6b), only
anti,E,E isomer was isolated by silica-gel chromatography using
toluene eluent, and then repeated washing with hexane, though
reverse-phase HPLC and GPC analysis of the mixture showed
the existence of other isomers and oligomeric products as minor
components; syn/anti and E/Z designates the geometrical rela-
tionships of two methyl groups on silicon and two alkene junc-
tions, respectively.8 The hydrogenative reduction of anti,E,E-6a
and anti,E,E-6b using tosylhydrazine10 afforded the correspond-
ing saturated macrocycles, anti-7a and anti-7b, quantitatively.
Interestingly, anti,E,E selectivity is very high for the RCM of
5a and 5b, although syn/anti and E/Z selectivity for interligand
RCM is not controlled in general.

The yields and stereochemistry of phenylene-bridged sila-
macrocycles obtained by the RCM depend significantly on the
chain-length of alkenyl substituents. The RCM of 5c having
longer alkenyl substituents gave an inseparable syn/anti and
E/Z mixture of 6c in 49%; the hydrogenative reduction of the
mixture afforded 7c with the syn/anti ratio of 1/2 in 89% yield
(Scheme 2).10 A similar RCM of 1,4-bis[di-!-butenyl(methyl)-
silyl]benzene did not produce the corresponding phenylene-
bridged macrocycles; instead, a mixture of intraligand RCM
products, 1,4-bis(1-methyl-1-silacycloheptenyl)benzenes 8d,
was obtained in 85% isolated yield (eq 1). The hydrogenation
of 8d gave the corresponding saturated macrocycle 9d in 96%
yield.9 Alkenyl chain-length effects on the yields of interligand
products for the RCM of bis[dialkenyl(phenyl)phosphine]plati-
num compounds5a have been shown to be similar to those
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for the present RCM, while the syn/anti selectivity is different
between the two RCMs.
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It is an interesting issue whether halogen substituents in the
highly congested environment of 6a and 6b are replaced by other
substituents. The iodine substituents of anti,E,E-6b were easily
removed by tert-butyllithium to give the corresponding dehalo-
genated macrocycle anti,E,E-6d after hydrolysis (eq 2), while
the debromination reaction of anti,E,E-6a with t-BuLi was in-
complete.9 The Sonogashira coupling reactions11 of anti,E,E-
6a and anti,E,E-6b with phenylacetylene did not proceed
(eq 3),12 suggesting severe steric hindrance during the reactions.
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Molecular structures of anti,E,E isomers of 6a, 6b, and 6d,
syn,E,E-6b, anti-7c, and 9d were determined by X-ray crystal-
lography.9,13 The X-ray structure of 6a is shown in Figure 1.
The phenylene planes of anti,E,E isomers of 6a, 6b, and 6d
are roughly perpendicular to the averaged plane of disilacycloal-
kadiene ring probably to minimize the steric contact between the
macro-ring and the phenylene rings. The most stable phenylene
ring conformation seems to be kept also in solution, because the
alkene proton chemical shifts for anti,E,E isomers of 6a, 6b, and
6d (4.74–4.90 ppm) are relatively lower than those of simple
alkenes [5.5 ppm for (E)-2-butene].14
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