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Abstract: 7,8-Diarylflavones were prepared by Suzuki–Miyaura
reactions of the bis(triflate) of 7,8-dihydroxyflavone. The first at-
tack proceeded with very good site selectivity at position 7, due to
steric and electronic reasons.
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Flavones (2-arylchromones, 2-aryl-4H-1-benzopyran-4-
ones) are of considerable pharmacological relevance and
are widespread in nature as plant metabolites.1 Pharmaco-
logical activities include antioxidant, antimicrobial, anti-
inflammatory, antiproliferative, and vasculo-protective
activity.1–3 Most syntheses of flavones rely on the assem-
bly of the chromone core structure by conventional meth-
ods.2,3 The selective modification of naturally occurring
flavones is mainly limited to date to the O-alkylation and
acylation of hydroxy groups.2

Polyhalogenated molecules represent interesting sub-
strates in palladium(0)-catalyzed cross-coupling reac-
tions.4 Recently, we have reported Suzuki–Miyaura and
Heck reactions of tetrabromothiophene, tetrabromo-N-
methylpyrrole, tetrabromoselenophene, and other polyha-
logenated heterocycles.5 We have also reported site-selec-
tive Suzuki–Miyaura reactions6 of the bis(triflate) of
methyl 2,5-dihydroxybenzoate and related substrates.7

Despite the great pharmacological importance of fla-
vones, only a few applications of palladium-catalyzed
cross-coupling reactions to flavone-derived halides or tri-
flates have been reported to date.8 Regioselective palladi-
um-catalyzed transformations of flavone-derived
bis(halides) or bis(triflates) have, to the best of our knowl-
edge, not yet been reported. Herein, we report the synthe-
sis of 7,8-diaryl-flavones by site-selective Suzuki–
Miyaura reactions of the bis(triflate) of 7,8-dihydroxyfla-
vone.

Commercially available 7,8-dihydroxyflavone (1) was
transformed to its bis(triflate) 2 in good yield
(Scheme 1).9 The Suzuki–Miyaura reaction of 2 with aryl-
boronic acids 3a–g (2.6 equiv) afforded the 7,8-diarylfla-
vones 4a–g in 59–74% yield (Scheme 2, Table 1).10,11

Both electron-poor and electron-rich arylboronic acids
could be successfully employed. The best yields were ob-
tained using Pd(PPh3)4 (5 mol%) as the catalyst and

K3PO4 (1.5 equiv) as the base. The reactions were carried
out in 1,4-dioxane at 100 °C. GC-MS analysis of crude
product mixtures showed that less than 10% of monoad-
duct was present when the reactions were carried out un-
der the optimized conditions.

Scheme 1 Synthesis of 2. Reagents and conditions: (i) 1 (1.0 equiv),
Tf2O (2.4 equiv), pyridine (4.0 equiv), CH2Cl2, –78 °C to 0 °C, 4 h.

Scheme 2 Synthesis of 4a–g. Reagents and conditions: (i), 2 (1.0
equiv), 3a–g (2.6 equiv), Pd(PPh3)4 (5 mol%), K3PO4 (4.0 equiv), 1,4-
dioxane, 100 °C, 4 h.

The Suzuki–Miyaura reaction of 2 with arylboronic acids
3a,c,f,h,i (1.0 equiv) afforded the 7-aryl-8-trifluorosulfo-
nyloxy-flavones 5a–e in 66–76% yield with very good
site selectivity (Scheme 3, Table 2).10,12 During the opti-
mization, it proved to be important to use exactly 1.0
equivalent of the arylboronic acid and to carry out the
reaction at 70 °C instead of 100 °C. Both electron-poor

Table 1 Synthesis of 4a–g

3 4 R Yield of 4 (%)a

3a 4a 4-EtC6H4 70

3b 4b 4-t-BuC6H4 59

3c 4c 4-ClC6H4 72

3d 4d 4-FC6H4 62

3e 4e 4-MeOC6H4 68

3f 4f 4-MeC6H4 74

3g 4g 3,5-Me2C6H3 71

a Yields of isolated products.
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and electron-rich arylboronic acids were successfully
used. Some crude reaction mixtures were analyzed by
GC-MS. Besides the desired products 5, a small amount
of the corresponding bisadducts 4 were also present.
When the reaction was carried out at 100 °C, the amount
of bis-adduct was considerably higher compared to the sit-
uation when the reaction was carried out at 70 °C (<10%).

Scheme 3 Synthesis of 5a–e. Reagents and conditions: (i) 2 (1.0
equiv), 3a,c,f,h,i (1.0 equiv), K3PO4 (1.5 equiv), Pd(PPh3)4 (5 mol%),
1,4-dioxane, 70 °C, 4 h.

The Suzuki–Miyaura reaction of 5c and 5b with aryl-
boronic acids 3a and 3e (1.3 equiv) afforded the 7,8-di-
arylflavones 6a and 6b, respectively (Scheme 4,
Table 3).10,13 The reactions were carried out at 100 °C.

Scheme 4 Synthesis of 6a,b. Reagents and conditions: (i) 5b,c (1.0
equiv), 3a,e (1.3 equiv), K3PO4 (1.5 equiv), Pd(PPh3)4 (5 mol%), 1,4-
dioxane, 100 °C, 4 h.

All products were characterized by spectroscopic meth-
ods. The constitution of products 5a–e and 6a,b were
proved by 2D NMR experiments (HMBC, NOESY). The

structure of 4f was independently confirmed by X-ray
crystal structure analysis (Figure 1).14

Figure 1 Crystal structure of 4f

The site-selective formation of 5a–e can be explained
with steric and electronic arguments. The first attack of
palladium(0)-catalyzed cross-coupling reactions general-
ly occurs at the more electronical deficient and sterically
less hindered position.4,15 Position 7 of 2 is sterically less
hindered than position 8. In addition, position 7 (located
meta to the ether oxygen atom and para to the carbonyl
group) is considerably more electron-deficient than posi-
tion 1 (located ortho to the ether oxygen atom and meta to
the carbonyl group).

In conclusion, we have reported an efficient synthesis of
7,8-diarylflavones were prepared by Suzuki–Miyaura
reactions of the bis(triflate) of 7,8-dihydroxyflavone. The
first attack proceeded with very good site selectivity at po-
sition 7.
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