Synthesis of 7,8-Diarylflavones by Site-Selective Suzuki–Miyaura Reactions

Imran Malik,^a Munawar Hussain,^a Nguyen Thai Hung,^a Alexander Villinger,^a Peter Langer^{*a,b}

^a Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany

^b Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany

Received 3 February 2010

Abstract: 7,8-Diarylflavones were prepared by Suzuki–Miyaura reactions of the bis(triflate) of 7,8-dihydroxyflavone. The first attack proceeded with very good site selectivity at position 7, due to steric and electronic reasons.

Key words: catalysis, palladium, Suzuki–Miyaura reaction, flavones, regioselectivity

Flavones (2-arylchromones, 2-aryl-4*H*-1-benzopyran-4ones) are of considerable pharmacological relevance and are widespread in nature as plant metabolites.¹ Pharmacological activities include antioxidant, antimicrobial, antiinflammatory, antiproliferative, and vasculo-protective activity.¹⁻³ Most syntheses of flavones rely on the assembly of the chromone core structure by conventional methods.^{2,3} The selective modification of naturally occurring flavones is mainly limited to date to the O-alkylation and acylation of hydroxy groups.²

Polyhalogenated molecules represent interesting substrates in palladium(0)-catalyzed cross-coupling reactions.⁴ Recently, we have reported Suzuki-Miyaura and Heck reactions of tetrabromothiophene, tetrabromo-Nmethylpyrrole, tetrabromoselenophene, and other polyhalogenated heterocycles.⁵ We have also reported site-selective Suzuki-Miyaura reactions⁶ of the bis(triflate) of methyl 2,5-dihydroxybenzoate and related substrates.⁷ Despite the great pharmacological importance of flavones, only a few applications of palladium-catalyzed cross-coupling reactions to flavone-derived halides or triflates have been reported to date.8 Regioselective palladium-catalyzed transformations of flavone-derived bis(halides) or bis(triflates) have, to the best of our knowledge, not yet been reported. Herein, we report the synthesis of 7,8-diaryl-flavones by site-selective Suzuki-Miyaura reactions of the bis(triflate) of 7,8-dihydroxyflavone.

Commercially available 7,8-dihydroxyflavone (1) was transformed to its bis(triflate) 2 in good yield (Scheme 1).⁹ The Suzuki–Miyaura reaction of 2 with arylboronic acids 3a-g (2.6 equiv) afforded the 7,8-diarylflavones 4a-g in 59–74% yield (Scheme 2, Table 1).^{10,11} Both electron-poor and electron-rich arylboronic acids could be successfully employed. The best yields were obtained using Pd(PPh₃)₄ (5 mol%) as the catalyst and

 K_3PO_4 (1.5 equiv) as the base. The reactions were carried out in 1,4-dioxane at 100 °C. GC-MS analysis of crude product mixtures showed that less than 10% of monoadduct was present when the reactions were carried out under the optimized conditions.

Scheme 1 Synthesis of 2. *Reagents and conditions*: (i) 1 (1.0 equiv), Tf₂O (2.4 equiv), pyridine (4.0 equiv), CH₂Cl₂, -78 °C to 0 °C, 4 h.

Scheme 2 Synthesis of 4a–g. *Reagents and conditions*: (i), 2 (1.0 equiv), 3a-g (2.6 equiv), Pd(PPh₃)₄ (5 mol%), K₃PO₄ (4.0 equiv), 1,4-dioxane, 100 °C, 4 h.

Table 1 Synthesis of 4a –	g
---	---

3	4	R	Yield of 4 (%) ^a
3a	4 a	$4-EtC_6H_4$	70
3b	4b	4-t-BuC ₆ H ₄	59
3c	4c	$4-ClC_6H_4$	72
3d	4d	$4-FC_6H_4$	62
3e	4 e	$4-MeOC_6H_4$	68
3f	4f	$4-MeC_6H_4$	74
3g	4g	3,5-Me ₂ C ₆ H ₃	71

^a Yields of isolated products.

The Suzuki–Miyaura reaction of **2** with arylboronic acids **3a,c,f,h,i** (1.0 equiv) afforded the 7-aryl-8-trifluorosulfonyloxy-flavones **5a–e** in 66–76% yield with very good site selectivity (Scheme 3, Table 2).^{10,12} During the optimization, it proved to be important to use exactly 1.0 equivalent of the arylboronic acid and to carry out the reaction at 70 °C instead of 100 °C. Both electron-poor

SYNLETT 2010, No. 15, pp 2244–2246 Advanced online publication: 12.08.2010 DOI: 10.1055/s-0030-1258043; Art ID: D03510ST © Georg Thieme Verlag Stuttgart · New York

and electron-rich arylboronic acids were successfully used. Some crude reaction mixtures were analyzed by GC-MS. Besides the desired products **5**, a small amount of the corresponding bisadducts **4** were also present. When the reaction was carried out at 100 °C, the amount of bis-adduct was considerably higher compared to the situation when the reaction was carried out at 70 °C (<10%).

Scheme 3 Synthesis of 5a–e. *Reagents and conditions*: (i) 2 (1.0 equiv), 3a,c,f,h,i (1.0 equiv), K_3PO_4 (1.5 equiv), $Pd(PPh_3)_4$ (5 mol%), 1,4-dioxane, 70 °C, 4 h.

Table 2 Synthesis of 5a-e

3	5	R	Yield of $5 (\%)^a$
3a	5a	4-EtC ₆ H ₄	72
3c	5b	$4-ClC_6H_4$	66
3f	5c	4-MeC ₆ H ₄	76
3h	5d	$4-F_3CC_6H_4$	69
3i	5e	4-HC=CH ₂ C ₆ H ₄	74

^a Yields of isolated products.

The Suzuki–Miyaura reaction of **5c** and **5b** with arylboronic acids **3a** and **3e** (1.3 equiv) afforded the 7,8-diarylflavones **6a** and **6b**, respectively (Scheme 4, Table 3).^{10,13} The reactions were carried out at 100 °C.

Scheme 4 Synthesis of 6a,b. *Reagents and conditions*: (*i*) 5b,c (1.0 equiv), 3a,e (1.3 equiv), K_3PO_4 (1.5 equiv), $Pd(PPh_3)_4$ (5 mol%), 1,4-dioxane, 100 °C, 4 h.

Table 3Synthesis of 7,8-Diarylflavones 6a,b

2	5 (A1	A?	V:-14 - f ((0/)a
3	3	0	Ar	AI ⁻	$\mathbf{f} \text{ led of } 0 (\%)^{2}$
3a	5c	6a	$4-MeC_6H_4$	$4-EtC_6H_4$	66
3e	5b	6b	$4-ClC_6H_4$	4-MeOC ₆ H ₄	73

^a Yields of isolated products.

All products were characterized by spectroscopic methods. The constitution of products 5a-e and 6a,b were proved by 2D NMR experiments (HMBC, NOESY). The structure of **4f** was independently confirmed by X-ray crystal structure analysis (Figure 1).¹⁴

Figure 1 Crystal structure of 4f

The site-selective formation of **5a–e** can be explained with steric and electronic arguments. The first attack of palladium(0)-catalyzed cross-coupling reactions generally occurs at the more electronical deficient and sterically less hindered position.^{4,15} Position 7 of **2** is sterically less hindered than position 8. In addition, position 7 (located *meta* to the ether oxygen atom and *para* to the carbonyl group) is considerably more electron-deficient than position 1 (located *ortho* to the ether oxygen atom and *meta* to the carbonyl group).

In conclusion, we have reported an efficient synthesis of 7,8-diarylflavones were prepared by Suzuki–Miyaura reactions of the bis(triflate) of 7,8-dihydroxyflavone. The first attack proceeded with very good site selectivity at position 7.

Acknowledgment

Financial support by the State of Pakistan (HEC scholarships for I.M. and M.H.), by the State of Mecklenburg-Vorpommern (scholarships for M.H. and N.T.H.) and by the DAAD (scholarships for I.M. and N.T.H.) is gratefully acknowledged.

References and Notes

- (a) *Römpp Lexikon Naturstoffe*; Steglich, W.; Fugmann, B.; Lang-Fugmann, S., Eds.; Thieme: Stuttgart, **1997**.
 (b) Harborne, J. B.; Baxter, H. *The Handbook of Natural Flavonoids*, Vol. 1; John Wiley and Sons: Chichester, **1999**.
 (c) Beecker, G. R. *J. Nutr.* **2003**, *133*, 3248S. (d) Havsteen, B. H. *Pharmacol. Ther.* **2002**, *96*, 67. (e) Middleton, E. Jr.; Kandaswami, C.; Theoharides, T. C. *Pharmacol. Rev.* **2000**, *52*, 672.
- (2) (a) Daskiewies, J.; Depeint, F.; Viornery, L.; Bayet, C.; Geraldine, C.; Comte, G.; Gee, J.; Johnson, I.; Ndjoko, K.; Hostettmann, K.; Barron, D. *J. Med. Chem.* 2005, *48*, 2790.
 (b) Rao, Y. K.; Fang, S. H.; Tzeng, Y. M. *Bioorg. Med. Chem.* 2005, *13*, 6850. (c) Wang, S. F.; Jiang, Q.; Ye, Y. H.; Li, Y.; Tan, R. X. *Bioorg. Med. Chem.* 2005, *13*, 4880.
 (d) Gao, H.; Kawabata, J. *Bioorg. Med. Chem.* 2005, *13*, 1661. (e) Gao, G. Y.; Li, D. J.; Keung, W. M. *J. Med. Chem.* 2001, *44*, 3320.

Synlett 2010, No. 15, 2244-2246 © Thieme Stuttgart · New York

- (3) (a) Su, B.; Hackett, J. C.; Diaz-Cruz, E. S.; Kim, Y. W.; Brueggemeier, R. W. *Bioorg. Med. Chem.* 2005, *13*, 6571.
 (b) Kim, Y. W.; Hackett, J. C.; Brueggemeier, R. W. *J. Med. Chem.* 2004, *47*, 4032. (c) Traxler, P.; Green, J.; Mett, H.; Sequin, U.; Furet, P. *J. Med. Chem.* 1999, *42*, 1018.
 (d) Cushman, M.; Zhu, H.; Geahlen, R. L.; Kraker, A. J. *J. Med. Chem.* 1994, *37*, 3353.
- (4) For reviews of cross-coupling reactions of polyhalogenated heterocycles, see: (a) Schröter, S.; Stock, C.; Bach, T. *Tetrahedron* 2005, *61*, 2245. (b) Schnürch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. *Eur. J. Org. Chem.* 2006, 3283.
- (5) (a) Dang, T. T.; Dang, T. T.; Ahmad, R.; Reinke, H.; Langer, P. *Tetrahedron Lett.* 2008, *49*, 1698. (b) Dang, T. T.;
 Villinger, A.; Langer, P. *Adv. Synth. Catal.* 2008, *350*, 2109. (c) Hussain, M.; Nguyen, T. H.; Langer, P. *Tetrahedron Lett.* 2009, *50*, 3929. (d) Tengho Toguem, S.-M.; Hussain, M.;
 Malik, I.; Villinger, A.; Langer, P. *Tetrahedron Lett.* 2009, *50*, 4962. (e) Dang, T. T.; Dang, T. T.; Rasool, N.; Villinger, A.; Langer, P. *Adv. Synth. Catal.* 2009, *351*, 1595.
- (6) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
 (b) Miyaura, N. Top. Curr. Chem. 2002, 219, 11.
- (7) Nawaz, M.; Ibad, M. F.; Obaid-Ur-Rahman, A.; Khera, R. A.; Villinger, A.; Langer, P. *Synlett* **2010**, 150.
- (8) (a) Zembower, D.; Zhang, H. J. Org. Chem. 1998, 63, 9300.
 (b) Zheng, X.; Meng, W.; Qing, F. Tetrahedron Lett. 2004, 45, 8083. (c) Huang, X.; Tang, E.; Xu, W. M.; Cao, J. J. Comb. Chem. 2005, 7, 802. (d) Peng, W.-J.; Han, X.-W.; Yu, B. Chin. J. Chem. 2006, 24, 1154.
- (9) Synthesis of 4-Oxo-2-phenyl-4H-chromene-7,8-diylbis(trifluoromethanesulfonate (2) To a CH₂Cl₂ solution (10 mL) of 1 (254 mg, 1.0 mmol) was added pyridine (0.32 mL, 4.0 mmol) at -78 °C under argon atmosphere. After stirring for 10 min, Tf2O (0.40 mL, 2.4 mmol) was added at -78 °C. The mixture was allowed to warm to 0 °C and stirred for 4 h. The reaction mixture was filtered, and the filtrate was concentrated in vacuo. Product 2 was isolated by rapid column chromatography (flash silica gel, heptanes-EtOAc) as a white solid (393 mg, 76%), mp 142–143 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 6.82$ (s, 1 H), 7.43-7.52 (m, 4 H, ArH), 7.88-7.91 (m, 2 H, ArH), 8.25 (d, J = 9.4 Hz, 1 H). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 108.3$ (CH), 118.6 (q, $J_{F,C}$ = 321.6 Hz, CF₃), 118.7 (q, $J_{F,C}$ = 320.4 Hz, CF₃), 118.9 (CH), 124.7 (C), 126.6, 126.7, 129.3 (CH), 129.9, 130.2 (C), 132.6 (CH), 143.9, 149.5, 164.5, 175.3 (C). ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -72.66, -72.85$. IR (KBr): v = 3080 (w), 1660 (s), 1613 (m), 1427 (s), 1359 (m), 1210, 1126 (s), 1053, 996, 955, 836, 794, 756 (m), 733 (w), 684 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 518 (95) [M⁺], 385 (7), 357 (15), 321 (29), 293 (100), 219 (66), 191 (79). HRMS (EI, 70 eV): m/z calcd for $C_{17}H_8F_6O_8S_2$ [M⁺]: 517.95700; found: 517.95651.
- (10) General Procedure for Suzuki–Miyaura Cross-Coupling Reactions

A 1,4-dioxane solution (3–4 mL) of **2** (1.0 equiv), arylboronic acid **3** (1.0–1.3 equiv per desired cross-coupling reaction), K_3PO_4 (1.5–2.0 equiv per desired cross-coupling reaction), and Pd(PPh₃)₄ (5 mol%) was heated at 70–100 °C for 4 h. After cooling to 20 °C, a sat. aq solution of NH₄Cl was added, the organic and aqueous layers were separated, and the latter was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography.

(11) 2-Phenyl-7,8-di(*p*-tolyl)-4*H*-chromen-4-one (4f)
Starting with 2 (259 mg, 0.5 mmol), K₃PO₄ (424 mg, 2.0 mmol), Pd(PPh₃)₄ (5 mol%), 4-methylphenylboronic acid (3f, 177 mg, 1.3 mmol), and 1,4-dioxane (5 mL), 4f was

isolated as a crystalline light yellow solid (148 mg, 74%), mp 248–249 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.19 (s, 3 H, CH₃), 2.29 (s, 3 H, CH₃), 6.75 (s, 1 H), 6.90–7.04 (m, 8 H, ArH), 7.24–7.33 (m, 3 H, ArH), 7.39 (d, 1 H, *J* = 8.2 Hz, ArH), 7.48–7.51 (m, 2 H, ArH), 8.16 (d, 1 H, *J* = 8.2 Hz, ArH), 7.48–7.51 (m, 2 H, ArH), 8.16 (d, 1 H, *J* = 8.2 Hz, ArH), 1³C NMR (75MHz, CDCl₃): δ = 21.2, 21.4 (CH₃), 106.7 (CH), 122.8 (C), 124.4, 126.2, 127.4, 128.6, 128.7, 128.9, 129.7 (CH), 130.2 (C), 131.0, 131.4 (CH), 131.6, 131.7, 137.0, 137.1, 146.7, 153.9, 163.2, 178.6 (C). IR (KBr): v = 2917 (w), 1631 (m), 1592 (w), 1446, 1371 (m), 1238 (w), 1145, 1016 (m), 917 (w), 816, 773, 690 (s), 665 (m) cm⁻¹. GC-MS (EI, 70 eV): *m/z* (%) = 402 (100) [M⁺], 387 (34), 359 (3), 331 (4), 299 (4), 285 (7), 243 (9), 229 (12). HRMS (EI): *m/z* calcd for C₂₉H₂₂O₂ [M⁺]: 402.16143; found: 402.161442.

- (12) 7-(4-Ethylphenyl)-4-oxo-2-phenyl-4*H*-chromen-8-yl Trifluoromethanesulfonate (5a) Starting with 2 (156 mg, 0.30 mmol), K₃PO₄ (96 mg, 0.45 mmol), Pd(PPh₃)₄ (5 mol%), (4-ethylphenyl)boronic acid (3a, 45 mg, 0.30 mmol), and 1,4-dioxane (3mL), 5a was isolated as a white solid (102 mg, 72%), mp 167-168 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.22$ (t, 3 H, J = 7.7 Hz, CH₃), 2.66 (q, 2 H, J = 7.5 Hz, CH₂), 6.83 (s, 1 H), 7.27 (d, 2 H, J = 8.0 Hz, ArH), 7.38 (d, 2 H, J = 8.3 Hz, ArH), 7.44 (d, 1 H, J = 8.3 Hz, ArH), 7.46–7.50 (m, 3 H, ArH), 7.95–7.97 (m, 2 H, ArH), 8.18 (d, 1 H, J = 8.3 Hz, ArH). ¹³C NMR (125.76 MHz, CDCl₃): δ = 15.5 (CH₃), 28.7 (CH₂), 108.2 (CH), 118.0 (q, $J_{F,C}$ = 320 Hz, CF₃), 124.2 (C), 125.1, 126.7, 127.4, 128.3, 129.1, 129.2 (CH), 130.8, 131.6 (C), 132.1 (CH), 135.1, 140.7, 145.9, 149.0, 163.8, 176.7 (C). $^{19}\mathrm{F}\ \mathrm{NMR}$ (282 MHz, CDCl₃): $\delta = -74.3$. IR (KBr): v = 2916, 2850 (w), 1622, 1568, 1447 (m), 1386 (s), 1271 (m), 1164 (s), 1041 (m), 906 (w), 811, 767, 681 (s), 634 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 474 (40) [M⁺], 410 (28), 395 (18), 366 (3), 341 (100), 326 (8), 313 (20), 281 (4). HRMS (EI): m/z calcd for C₂₄H₁₇F₃O₅S [M⁺]: 474.07471; found: 474.07492.
- (13) 8-(4-Ethylphenyl)-2-phenyl-7-(p-tolyl)-4H-chromen-4one (6a)

Following the general procedure starting with 5c (101 mg, 0.22 mmol), K₃PO₄ (93 mg, 0.44 mmol), Pd(PPh₃)₄ (5 mol%), 4-(ethylphenyl)boronic acid (3a, 44 mg, 0.29 mmol), and 1,4-dioxane (3 mL), 6a was isolated as a yellow solid (60 mg, 66%), mp 198-199 °C. ¹H NMR (500 MHz, $CDCl_3$): $\delta = 1.20$ (t, 3 H, J = 7.9 Hz, CH_3), 2.23 (s, 3 H, CH₃), 2.62 (q, 2 H, J = 7.5 Hz), 6.79 (s, 1 H), 6.95–7.01 (m, 4 H, ArH), 7.07-7.12 (m, 4 H, ArH), 7.26-7.38 (m, 3 H, ArH), 7.43 (dd, 1 H, J = 3.4, 8.3 Hz, ArH), 7.50–7.54 (m, 2 H, ArH), 8.18 (d, 1 H, J = 8.3 Hz, ArH). ¹³C NMR (125.75 MHz, CDCl₃): δ = 15.8, 21.1 (CH₃), 28.7 (CH₂), 122.8 (C), 124.3, 126.2, 127.4, 128.6, 128.7, 128.8, 128.9, 129.6, 131.0, 131.3 (CH), 131.6, 131.7, 132.0, 137.0, 143.5, 146.5, 146.7, 153.9, 136.1, 178.7 (C). IR (KBr): v = 2962, 2923, 1644 (s), 1597 (w), 1371 (m), 1202, 1096, 1016 (w), 815, 771 (m), 688 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 416 (100) [M⁺], 402 (16), 387 (49), 313 (6), 285 (14), 271 (5), 253 (6), 239 (9). HRMS (EI): m/z calcd for $C_{30}H_{24}O_2$ [M⁺]: 416.17783; found: 416.17762.

- (14) CCDC-781627 contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ; fax: +44 (1223)336033; or deposit@ccdc.cam.ac.uk.
- (15) For a simple guide for the prediction of the site-selectivity of palladium(0)-catalyzed cross-coupling reactions based on the ¹H NMR chemical shift values, see: Handy, S. T.; Zhang, Y. Chem. Commun. **2006**, 299.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.