This article was downloaded by: [Universidad de Sevilla] On: 18 November 2014, At: 01:57 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lncn20

Oligonucleotides Containing Pyrazolo[3,4d]Pyrimidines: 8-Aza-7-deazaadenines With Bulky Substituents in the 2- or 7-Position

Frank Seela ^{a b} , Anup M. Jawalekar ^{a b} , Lijuan Sun ^{a b} & Peter Leonard ^{a b}

^a Laboratorium für Organische und Bioorganische Chemie , Institut für Chemie, Universität Osnabr ück , Osnabrück, Germany

^b Laboratorium für Organische und Bioorganische Chemie, Center for Nanotechnology (CeNTech), Münster, Germany Published online: 16 Aug 2006.

To cite this article: Frank Seela , Anup M. Jawalekar , Lijuan Sun & Peter Leonard (2005) Oligonucleotides Containing Pyrazolo[3,4-d]Pyrimidines: 8-Aza-7-deazaadenines With Bulky Substituents in the 2- or 7-Position, Nucleosides, Nucleotides and Nucleic Acids, 24:10-12, 1485-1505, DOI: <u>10.1080/15257770500265745</u>

To link to this article: http://dx.doi.org/10.1080/15257770500265745

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

OLIGONUCLEOTIDES CONTAINING PYRAZOLO[3,4-d]PYRIMIDINES: 8-Aza-7-deazaadenines With Bulky Substituents in the 2- or 7-Position

Frank Seela, Anup M. Jawalekar, Lijuan Sun, and Peter Leonard *Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Osnabrück, Germany, and Center for Nanotechnology (CeNTech), Münster, Germany*

□ The synthesis of the 2'-deoxyadenosine analogues **1b**, **2b**, and **3c** modified at the 7- and/or 2-position is described. The effect of 7-chloro and 2-methylthio groups on the duplex stability is evaluated. For that, the nucleosides **1b**, **2b**, and **3c** were converted to the corresponding phosphoramidites **15**, **19**, and **22**, which were employed in the solid-phase oligonucleotide synthesis. In oligonucleotide duplexes, compound **1b** forms stable base pairs with dT, of which the separated **1b-dT** base pairs contribute stronger than that of the consecutive base pairs. Compound **2b** shows universal base pairing properties while its N8 isomer **3c** forms duplexes with lower stability.

Keywords Nucleosides; Oligonucleotides; Pyrazolo[3,4-d]pyrimidines; Bulky subtituents; Base pairing; Duplex stability

INTRODUCTION

8-Aza-7-deaza-2'-deoxyadenosine $(1a)^{[1]}$ (purine numbering is used throughout the discussion section, Figure 1) is an ideal substitute of 2'deoxyadenosine within duplex DNA. The multiple incorporations of **1a**-dT in place of dA-dT do not cause a significant change of the T_m values.^[2,3] Extensive studies have been performed modifying the 8-aza-7-deaza-2'-deoxyadenosine (1a) at the 7-position with bulky substituents. It was shown that the 7-substituents of moderate size stabilize the duplex DNA significantly.^[3-6]

In memory to my good friend the late Professor Dr. John A. Montgomery. Received 19 January 2005; accepted 30 March 2005.

Address correspondence to F. Seela, Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany. Fax: +49 541 969 2370; E-mail: frank.seela@uni-osnabrueck.de

We thank Dr. Helmut Rosemeyer for the NMR measurements, Mrs. Elisabeth Michalek for oligonucleotide synthesis, Mrs. Monika Dubiel for her help during the preparation of the manuscript, and Mr. Khalil Shaikh for MALDI-TOF spectra. Financial support by the Roche Diagnostic GmbH, Penzberg, is gratefully acknowledged.

FIGURE 1 8-Aza-7-deazapurine-2'-deoxyribonucleosides.

This has been demonstrated on halogenated and alkynylated nucleosides. Up to now the bromo, iodo, propynyl, and hexynyl compounds **1c-1f** have been studied and their bulky side chains were found to be accommodated well in the major groove of B-DNA.^[3-6] We are further extending the series of 7-substituted compounds with the 7-chloro nucleoside 1b. Different from the 7-substituted nucleosides, 2-substituted purine or purine like nucleobases do not show such favorable properties. 2-Substituted purine nucleosides with halogeno substituents have already been prepared by Montgomery and by others.^[7–12] Unlike these nucleosides only a few pyrazolo pyrimidine nucleosides containing halogens in the 2-position have been synthesized.^[13,14] As 2-substituents are located in the minor groove of B-DNA, their dimension is limited by the narrow size of this groove. Recently, the effect of 2-chloro substituent was studied by incorporating the 2-chloro-8-aza-7-deazaadenine nucleoside 2a in duplex DNA.^[14] The 2-chloro group causes a steric clash with the 2-oxo group of dT resulting in duplex destabilization. Nature uses even bulkier 2-methylthio groups to modify adenine residues in RNA^[15-17]—a phenomenon which has recently been studied on the oligonucleotide level.^[15] We became interested in such a modification on 8-aza-7-deazapurine nucleosides (2b and 3c). Contrary to purines, an 8aza-7-deazapurine cannot form Hoogsteen base pairs and will be devoid base pairing within duplex DNA but will allow base stacking. This manuscript reports on the incorporation and the base pairing of the 8-aza-7-deazaadenine nucleosides 1b, 2b, and 3c containing oligonucleotide duplexes. For that the phosphoramidites 15, 19, and 22 are prepared which are employed in solid-phase synthesis.

RESULTS AND DISCUSSION

Synthesis and Properties of Monomers

For the synthesis of the target nucleosides 1b, 2b, and 3c, 8-aza-7-chloro-7-deaza-6-methoxypurine (4) and 8-aza-2-methylthio-7-deaza-6-isopropoxypurine (8) served as precursors. Treatment of 8-aza-7-deaza-6-methoxypurine^[1,18] with N-chlorosuccinimide (NCS) in DMF gave 4, while the reaction of 8-aza-2-methylthio-7-deaza-6-chloropurine^[19] with 1M NaOiPr yielded 8. Glycosylation of compound 4 under nucleobase anion conditions (KOH/ TDA-1) with 2-deoxy-3,5-di-O-(p-toluoyl)- β -D-erythro-pentofuranosyl chloride (5)^[20,21] afforded compound **6** as major product. Likewise, the glycosylation of 8 with 5 gave the regioisomeric N⁹- and N⁸-glycosylated compounds 9 and 10 in nearly 2:1 proportion.^[14] The latter were deprotected with 0.1 or 0.4 M Na in corresponding alcohols to yield the nucleosides 7, 11, and 12 as colorless compounds.^[4] Subsequently, the 6-alkoxy groups were displaced by an amino group in NH₃/MeOH in a steel bomb (90 $^{\circ}$ C) furnishing the nucleosides 1b, 2b, and 3c (Schemes 1 and 2). As 2'-deoxyribonucleosides are sensitive to acidic depurination, the stability of the N-glycosylic bonds of 1b, 2b, and 3c were evaluated UV-spectrophotometrically in 2 N HCl at 40°C. Compound **2b** ($t_{1/2}$ 5.8 h) was much more stable on its N-glycosylic bond than its regioisomer **3c** ($t_{1/2}$ 3.8 h) and 8-aza-7-chloro-7-deaza-2'-deoxyadenosine **1b** $(t_{1/2} 2.3 h)$.

Next, the protection of the 6-amino group of the nucleosides **1b**, **2b**, and **3c** was performed. For that, the nucleosides **1b** and **2b** were treated with dimethylformamide dimethylacetal at r.t. or 50°C yielding the (dimethylamino)methylidene compounds **13** and **16** (Schemes 3 and 4).^[4] The nucleoside **3c** was treated with isobutyryl chloride affording the protected compound **20**.^[22] The stability of the protecting groups was determined by

(i) KOH, TDA-1, MeCN, r.t., (ii) 0.4 M NaOMe in MeOH and (iii) NH₃/MeOH

SCHEME 1

F. Seela et al.

(i) KOH, TDA-1, MeCN, r.t., (ii) 0.1M NaOiPr in iPrOH and (iii) NH₃/MeOH

SCHEME 2

UV spectrophotometrically in 25% ammonia at r.t. While the formamidine derivative 13 showed a half life $\tau = 1.6$ min, at 230 nm, the compound 16 was rather labile to ammonia treatment. So acetamidine protection was employed for the amino function of 2b which was therefore treated with dimethylacetamide dimethyl acetal in methanol at 50°C to yield compound

SCHEME 3

(i) (Me)₂NHC(OMe)₂, MeOH, (ii) (Me)₂NMeC(OMe)₂, MeOH, (iii) (MeO)₂TrCl, pyridine and (iv) 2-cyanoethyldiisopropylphosphoramido chloridite, CH₂Cl₂

SCHEME 4

17 ($\tau = 21.5$ min, at 320, in 25% ammonia).^[23] For compound 20, the isobutyryl group was found to be the most suitable protecting group ($\tau = 128$ min, at 330 nm). The 5'-OH groups of the nucleosides 13, 17, and 20 were protected with the 4,4'-dimethoxytrityl residue \rightarrow 14, 18, and 21 under standard conditions and the 3'-OH groups were phosphitylated to give the phosporamidites 15, 19, and 22.^[14] (Schemes 3–5).

All compounds were characterized by ¹H-, ¹³C-, or ³¹P-NMR spectra (Table 1 and Experimental), as well as by elemental analysis or mass spectra. The ¹³C-NMR signals were assigned by gated-decoupled ¹³C-NMR or heteronuclear [¹H, ¹³C]-NMR correlation spectra. Nucleoside **1b** was assigned as N9 isomer according to the published literature.^[4] The assignment of the glycosylation position of **2b** and **3c**, was performed on the basis of chemical shift analyses. In ¹³C-NMR, the carbon signal next to the glycosylation site is shifted by 8 ppm upfield when the glycosylation position changes from N9 to N8 (Table 1). This is also the case for the corresponding derivatives **9**-**12**. The introduction of the acetamidine protecting group (**17**) has a strong influence on the ¹³C-NMR chemical shifts of the heterocyclic system. NOE data were used to confirm the anomeric configuration as well as the glycosylation position of the nucleoside **3c**. Irradiation of **3c** on H-(7) gave NOEs

(i) i-BuCl, pyridine, (ii) (MeO)₂TrCl, pyridine and
 (iii) 2-cyanoethyldiisopropylphosphoramido chloridite, CH₂Cl₂

SCHEME 5

at H-(1') (8.8%), H-(2') (1.5%), and H-(3') (1.8%). Due to the spatial relationships of the H-atoms, the glycosylic bond of compound **3c** is β -D, and the glycosylation site is N8.

Oligonucleotides

Synthesis. Oligonucleotide synthesis was performed applying the phosphoramidites **15**, **19** and **22** in solid-phase oligonucleotide chemistry in an automatized DNA synthesizer. The coupling yields were always higher than 95%. The oligonucleotides were deprotected in 25% NH₃ solution and purified by RP-18 HPLC. The homogeneity of the oligonucleotides was established by reversed-phase HPLC. The modified oligonucleotides were characterized by MALDI-TOF mass spectroscopy, and the detected masses were found in good agreement with the calculated values (Table 2).

Oligonucleotide Duplex Stability. Among the 8-aza-7-deaza-2'-deoxyadenosines, the 7-substituted Br, I, propynyl and hexynyl nucleosides (**1c-1f**) have shown a positive effect on the duplex stability.^[3–6] In this regard, the contribution of a 7-chloro substituent (**1b**) is unknown. For that purpose, a series of oligonucleotides were synthesized replacing dA at the various positions by **1b** in the duplex 5'-d(TAGGTCAATACT)•3'-d(ATCCAGTTATGA) (**23•24**) (Table 3).

A systematic evaluation of the duplexes with an increasing number of 1b reveals the importance of different positions of incorporation to the thermal stability (Table 3). Thus, a single incorporation of 1b at the central position (\rightarrow 25) stabilizes the dA-dT base pair by 2°C, while a consecutive incorporation (\rightarrow 26) gives a stabilization of 1.5°C per modification. In another sequence (\rightarrow 27), two incorporations of 1b at different positions led

Compound ^b	C(3)	C(3a)	C(4)	C(6)	C(7a)	MeS	OCH ₃ /2CH ₃
4	130.9	98.9	162.9	156.1	156.3		
6	132.3	100.3	163.1	156.8	155.5		54.7
7	131.6	100.1	163.0	156.6	155.4		54.6
1b	131.7	97.4	157.2	157.7	154.5		
8	131.9	99.0	168.3	161.5	156.8	13.7	21.6
9	132.9	100.2	169.5	161.5	155.7	13.7	21.5
10	125.5	100.5	168.5	163.0	161.5	13.7	21.5
11	133.5	100.1	169.1	161.5	155.6	13.7	21.5
2b	133.3	98.2	168.9	157.0	154.3	13.3	
12	124.4	100.2	168.1	163.0	161.3	13.6	21.5
3c	125.7	100.4	169.6	161.1	159.2	14.0	
13	133.4	104.0	161.9	156.4	155.1		
14	133.4	104.0	161.9	156.4	155.1		54.8
16	133.9	105.4	168.5	161.3	155.2	13.7	
17	133.8	105.7	168.5	160.8	154.9	13.6	
18	133.7	105.7	168.5	160.8	154.8	13.6	54.9
20	129.8	100.6	167.7	161.0	153.7	13.3	19.1
21	129.7	100.9	167.5	161.1	153.7	13.4	19.1
	C(1')	C(2')	C(3')	C(4)	C(5)		
6	84.3	35.2	78.4	87.6	63.6		
7	84.2	37.8	70.6	87.7	62.0		
1b	83.7	37.7	70.7	87.6	62.2		
9	81.3	35.2	74.6	84.2	63.9		
10	90.3	36.7	74.4	82.2	63.8		
11	83.9	37.7	70.9	87.6	62.3		
2b	83.5	37.7	71.1	87.4	62.4		
12	90.6	С	70.3	88.3	61.6		
3c	91.2	с	71.7	89.2	63.1		
13	83.7	37.7	70.7	87.6	62.2		
14	83.6	38.0	70.4	85.1	64.0		
16	83.7	37.7	71.1	87.5	62.5		
17	83.7	37.7	71.1	87.5	62.5		
18	83.6	38.0	70.8	85.2	64.4		
20	90.6	с	70.7	88.5	62.1		
21	90.1	с	70.2	86.1	63.8		

TABLE 1 ¹³C-NMR Chemical Shifts of Pyrazolo[3,4-d]pyrimidine Nucleosides^a

^aMeasured in DMSO-d₆.

^bSystematic numbering.

^cSuperimposed by DMSO-d₆.

to a stronger stabilization (3°C per modification). A combination of consecutive and two separated incorporations in a same sequence (\rightarrow **28**) reflect to the stability and contribute 1.75° per modification. From the above observation, it can be concluded that the incorporation of **1b** stabilizes the duplexes significantly and the separated base pairs contribute stronger than that of the consecutive ones. The increase in the duplex stability can be attributed to the stacking of the nearest neighbors and the flexibility obtained to the 7-Cl substituent so as to accommodate well in the major groove.

Oligonucleotides	$[M \mathrm{H}^+]$ (calc.)	$[M \mathrm{H}^+]$ (found)
5′-d(TAGGTC1bATACT) (25)	3680	3679
5'-d(TAGGTC1b1bTACT) (26)	3714	3714
3′-d(ATCC1bGTT1bTGA) (27)	3714	3713
5'-d(T1bGGTC1b1bT1bCT) (28)	3783	3783
5′-d(TAGGTCA1aTACT) (36)	3645	3645
5'-d(TAGGTCA 2b TACT) (41)	3691	3691
5'-d(TAGGTCA3cTACT) (45)	3691	3692

TABLE 2 Molecular Masses Determined by MALDI-TOF Mass Spectroscopy

Next, the self-complementary oligonucleotides containing alternating bases or base tracts were studied. Earlier investigations on oligonucleotides with modified bases showed that self-complementary duplexes formed by alternating 5'-d(A-T)_n are extraordinarily sensitive to base modifications. It results from the particular structure of these oligomers.^[24] For that reason, the self-complementary oligomer 5'-d(1b-dT)₆ was evaluated. When compared to 5'-d(1c-dT)₆, 5'-d(1d-dT)₆, 5'-d(1e-dT)₆, and 5'-d(1f-dT)₆ duplexes^[4-6] (Table 4), the T_m values of the alternating duplexes differ significantly from each other. From Table 4, it is apparent that the oligonucleotides with alternating 7-substituted 1b-1f show a stabilization of 15–30° over unsubstituted 1a. Thermal stability increases from 1a-1e with the exception of 1f. We attribute the increase in T_m values from 1a-1e to the bulkiness of the 7-substituted groups (Table 5).^[25] Being most bulky, the 7-hexynyl substituted compound 1f (Table 5) does not lead to a duplex stabilization compared to

TABLE 3 T_m Values and Thermodynamic Data of Oligonucleotides Containing Compd. $1b^a$

Duplexes		Tm (°C)	ΔT_m (°) per modification	$\Delta { m H^{\circ}}$ (kcal/mol)	ΔS° (cal/mol K)	$\Delta { m G^{\circ}}_{310}$ (kcal/mol)
5'-d(TAGGTCAATACT)	23	47		-84		-10.6
3'-d(ATCCAGTTATGA)	24	17		01	250	10.0
5'-d(TAGGTC1bATACT)	25	40	±9.0	_03	-964	_11.9
3'-d(ATCCAGTTATGA)	24	49	72.0	-55	-204	-11.2
5′-d(TAGGTC1b1bTACT)	26	50	115	80	950	11.5
3'-d(ATCCAGTTATGA)	24	50	± 1.5	-89	-250	-11.5
5'-d(TAGGTCAATACT)	23	52	120	00	959	19.1
3′-d(ATCC1bGTT1bTGA)	27	55	+3.0	-90	-232	-12.1
5'-d(TAG GTC1bATACT)	25	54	19.2	05	965	19.7
3'-d(ATCC1bGTT1bTGA)	27	54	+2.5	-95	-205	-12.7
5'-d(TAGGTC1b1bTACT)	26	56	19.95	09	959	19.0
3'-d(ATCC1bGTT1bTGA)	27	50	+2.25	-92	-255	-12.9
5′-d(T1bGGTC1b1bT1bCT)	28	E 4	1 75	09	956	19.4
3'-d(ATCCAGTTATGA)	24	54	+1.75	-92	-250	-12.4
5′-d(T1bGGTC1b1bT1bCT) 3′-d(ATCC1bGTT1bTGA)	28 27	58	+1.8	-95	-261	-13.9

 aMeasured in 100 mM NaCl, 10 mM MgCl_2, and 10 mM Na-cacodylate (pH 7.0) with 5 μM single-strand concentration.

Duplexes		Tm (°C)	ΔT_m (°) per modification	ΔH° (kcal/mol)	ΔS° (cal/mol K)	$\Delta { m G^{\circ}}_{310}$ (kcal/mol)
5'-d[(A-T) ₆] ₂ -3'	29•29	33		-45	-125	-6.3
$5' - d[(1a - T)_6]_2 - 3'$	30•30	36	0.25	_	_	_
$5' - d[(1b-T)_6]_2 - 3'$	31•31	51	1.5	-56	-152	-9.3
$5' - d[(1c-T)_6]_2 - 3'$	32•32	52	1.6	-59	-157	-9.7
$5' - d[(1d-T)_6]_2 - 3'$	33•33	56	1.9	-61	-163	-10.5
$5' - d[(1e-T)_6]_2 - 3'$	34•34	66	2.75	-91	-246	-14.5
$5' - d[(1f-T)_6]_2 - 3'$	35•35	56	1.9	-61	-163	-10.6

TABLE 4 T_m Values and Thermodynamic Data of Self-complimentary Oligonucleotides Containing the Nucleosides **1a-f**^{*a*}

 a Measured in 1 M NaCl, 100 mM MgCl_2, and 60 mM Na-cacodylate (pH 7.0) with 5 μM single-strand concentration.

the 7-propynyl residue **1e**. This suggests that the major groove can accommodate the bulky 7-substituents up to a certain size, thereafter it does reflect to the stability. Thus, the size of the 7-substituted groups plays an important role to the stabilization of the duplexes. Moreover, all the halogenated compounds increase the duplex stability compared to **1a**.

In contrary to the 7-substituted compounds **1a-1f**, 2-substituted compounds influence the base pairing property as they are located in the core of the helix. Earlier, the contribution of the 2-chloro group of 2-chloro-8aza-7-deaza-2'-deoxyadenosine (**2a**) has been evaluated incorporating it in a duplex **23**•**24**.^[14] The 2-chloro substituent causes steric clash with the 2oxo group of dT as well as with the 2-amino group of dG and results to the destabilization. Besides that, it shows the stacking effect opposite to dC and dA. Recent studies on the RNA duplexes containing 2-methylthio adenosine and its derivatives have shown that 2-methylthio groups enhance the stacking interactions with adjacent base pairs.^[15] Therefore, it was anticipated that the base pairing strength opposite to dC and dA can be maximized with the large size 2-MeS group (Table 5), which could lead to universal base pairing properties. For that, a single incorporation of 2-methylthio-8-

Substituent	Molar volume (cm ³)	Van der Waals radii (Å)
H (1a)	83.8 ± 3.0	1.20 (H)
7-Cl (1b) or 2-Cl (2a)	95.7 ± 3.0	1.80 (Cl)
7-Br (1c)	100.0 ± 3.0	1.95 (Br)
7-I (1d)	105.8 ± 3.0	2.15 (I)
7-Propynyl (1e)	118.3 ± 5.0	_
7-Hexynyl (1f)	167.4 ± 5.0	_
2-MeS (2b or 3c)	116.2 ± 5.0	_

TABLE 5 The Molar Volume (Size) of Nucleobases of **1a-f** and **2a**, **2b**, or **3c**

Downloaded by [Universidad de Sevilla] at 01:57 18 November 2014

TABLE 6 T_m Values and Thermo 1a , 2a , and 2b Opposite to the Ca	dynamic D anonical Ni	ata of Olig ucleosides	onucleotides In	corporating the	Nucleosides
	Tm	ΔT_{m}	ΔH°	ΔS°	$\Delta G^{\circ}{}_{310}$

Duplexes		$(^{\circ}C)^{a}$	$\Delta T_{\rm m}$ (°C) ^a	ΔH° (kcal/mol)	ΔS° (cal/mol [·] K)	ΔG°_{310} (kcal/mol)
5'-d(TAGGTCAATACT)	23	50		00	959	19.0
3'-d(ATCCAGT T ATGA)	24	50		-90	-232	-12.0
5'-d(TAGGTCA1aTACT)	36	51	+ 1	79	904	10.9
3'-d(ATCCAGT T ATGA)	25	51	± 1	-73	-204	-10.2
5'-d(TAGGTCA1aTACT)	36	86	15	64	181	75
3'-d(ATCCAGTCATGA)	37	50	-15	-04	-101	-7.5
5'-d(TAGGTCA1aTACT)	36	28	12	64	181	8.0
3'-d(ATCCAGTAATGA)	38	30	-15	-04	-101	-8.0
5'-d(TAGGTCA1aTACT)	36	44	-6	-70	-196	_9.0
3'-d(ATCCAGTGATGA)	39	11	-0	-70	-150	-5.0
5'-d(TAGGTCA 2a TACT)	40	44	-6	-76	-913	-95
3'-d(ATCCAGT T ATGA)	24	11	0	10	215	5.5
5'-d(TAGGTCA 2a TACT)	40	81	-19	-58	-166	-67
3'-d(ATCCAGT C ATGA)	37	01	10	50	100	0.7
5'-d(TAGGTCA2aTACT)	40	38	-19	-71	-203	-8.1
3'-d(ATCCAGT A ATGA)	38	00			100	011
5'-d(TAGGTCA2aTACT)	40	38	-12	-60	-167	-7.9
3'-d(ATCCAGT G ATGA)	39					
5'-d(TAGGTCA 2b TACT)	41	41	-9	-73	-206	-8.7
3'-d(ATCCAGT T ATGA)	24					
5'-d(TAGGTCA2bTACT)	41	37	-13	-67	-192	-7.6
3'-d(ATCCAGTCATGA)	37					
5'-d(TAGGTCA 2b TACT)	41	40	-10	-69	-196	-8.2
3'-d(ATCCAGTAATGA)	38					
5'-d(TAGGTCA 2b TACT)	41	39	-11	-73	-209	-8.0
3'-d(AICCAGIGAIGA)	39					
5'-d(TAGGTCASTACT)	42	33	-17	-47	-129	-7.0
3'-d(AICCAGITAIGA)	24					
5' - d(TAGGTCASTACT)	42	34	-16	-52	-146	-7.1
3' - d(AICCAGICAIGA)	37					
$\mathfrak{I} = \mathfrak{I} = $	42	34	-16	-51	-141	-7.2
$\mathcal{F}_{\mathcal{A}}$ (ATUCAGIAAIGA)	38 49					
$b^{-}a(\text{IAGGICASIACI})$	42	33	-17	-48	-131	-7.0
3 -α(ATCCAGT G ATGA)	39					

^aMeasured at 260 nm in 1 M NaCl, 100 mM MgCl₂, and 60 mM Na-cacodylate (pH 7.0) with 5 μ M single-strand concentration.

aza-7-deaza-2'-deoxyadenosine **2b** or **3c** was made replacing dA residue in the sequence **23**, leading to oligonucleotides **41** and **45** (Tables 6 and 7). The data for the 2-chloro compound **2a** used for the comparison is taken from the previously published article.^[14]

According to the $T_{\rm m}$ values shown in Table 6, the 2-methylthio nucleoside **2b** behaves almost identically towards all the DNA constituents (dA, dG, dT, and dC) and shows universal base pairing. $T_{\rm m}$ values are generally 10– 12°C lower than that of parent duplex **23**•**24**. As compared to the 2-chloro nucleoside **2a**, a degree of stabilization of **2b** against dC is 6°C higher and

	T_{m} (°C) ^{<i>a</i>}	ΔT_m (°C) ^a	$\Delta { m H^{\circ}}$ (kcal/mol)	ΔS° (cal/mol [·] K)	$\Delta { m G^{\circ}}_{310}$ (kcal/mol)
23	50		00	959	19.0
24	50		-90	-252	-12.0
43	19	7	74	910	0.1
24	43	-7	-74	-210	-9.1
43	4.4	6	70	996	0.2
37	44	-0	-79	-220	-9.5
43	4.4	6	79	909	0.4
38	44	-0	-72	-202	-9.4
43	46	4	75	900	0.8
39	40	-4	-75	-205	-5.8
44	40	_10	-76	-916	-84
24	40	-10	-70	-210	-0.4
44	46	_4	-83	-933	-10.3
37	10	-1	-05	-235	-10.5
44	46	_4	-81	-997	-10.1
38	10	1	01	227	10.1
44	41	_0	_77	_991	_8.8
39	71	-5	-77	-221	-0.0
45	30	-11	-53	-147	-8.0
24	55	11	55	117	0.0
45	47	-3	-77	-918	-97
37	17	5		210	5.7
45	46	-4	-77	-919	-94
38	10			210	5.1
45	39	-11	-50	-134	-8.0
39	00		00	101	0.0
	23 24 43 24 43 37 43 38 43 39 44 24 44 37 44 38 44 39 45 24 45 37 45 38 45 39	$\begin{array}{c} & T_m \\ (^\circ C)^a \\ \hline 23 & 50 \\ \hline 43 & 43 \\ \hline 43 & 43 \\ \hline 43 & 44 \\ \hline 37 & 44 \\ \hline 43 & 44 \\ \hline 43 & 46 \\ \hline 44 & 40 \\ \hline 44 & 46 \\ \hline 37 & 46 \\ \hline 44 & 46 \\ \hline 37 & 46 \\ \hline 44 & 39 & 41 \\ \hline 45 & 39 \\ \hline 45 & 39 \\ \hline 45 & 46 \\ \hline 38 & 46 \\ \hline 45 & 39 \\ \hline 39 & 39 \\ \hline \end{array}$	$\begin{array}{c c} T_m & \Delta T_m \\ (^\circ C)^a & (^\circ C)^a \end{array} \\ \begin{array}{c} 23 & 50 \\ (^\circ C)^a & & \\ (^\circ $	$\begin{array}{c c c c c c c c c } T_m & \Delta T_m & \Delta H^\circ \\ (^\circ C)^a & (^\circ C)^a & (kcal/mol) \\ \hline 23 & 50 & -90 \\ \hline 43 & 43 & -7 & -74 \\ \hline 43 & 43 & -6 & -79 \\ \hline 43 & 44 & -6 & -79 \\ \hline 43 & 44 & -6 & -72 \\ \hline 43 & 44 & -6 & -72 \\ \hline 43 & 46 & -4 & -75 \\ \hline 44 & 40 & -10 & -76 \\ \hline 44 & 40 & -10 & -76 \\ \hline 44 & 46 & -4 & -83 \\ \hline 44 & 46 & -4 & -81 \\ \hline 44 & 46 & -4 & -81 \\ \hline 44 & 41 & -9 & -77 \\ \hline 45 & 39 & -11 & -53 \\ \hline 45 & 46 & -4 & -77 \\ \hline 45 & 39 & -11 & -53 \\ \hline 38 & 46 & -4 & -77 \\ \hline 45 & 39 & -11 & -50 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 7 T_m Values and Thermodynamic Data of Oligonucleotides Incorporating the Nucleosides **3a**, **3b**, and **3c** Opposite to the Canonical Nucleosides

^{*a*}Measured at 260 nm in 1 M NaCl, 100 mM MgCl₂, and 60 mM Na-cacodylate (pH 7.0) with 5 μ M single-strand concentration.

that against dA is 2°C higher. When **2b** is incorporated against dC, it behaves like **1a**, and against dA it gives a 2°C stabilization over that of **1a**. This is a direct result of a contribution of the 2-methylthio group to the stability by enhanced stacking interactions. When there is face-face base pairing, the 2-MeS group should accommodate in the minor grove and could result in labile duplexes. Based on the earlier reports of the purine polynucleotides: the 2-methylthio group of purine polynucleotides alters the Watson-Crick base pairs due to the steric repulsion with the 2-oxo group of heterocyclic rings and stabilizes the duplex by Hoogsteen base pairing. But this is not the case in **2b** as it cannot form the Hoogsteen base pairs.^[17] Therefore, we believe that when compound **2b** pairs opposite to canonical bases, the base moiety might turn around protruding the 2-MeS group into the major groove which results in a stabilization by simple stacking interaction. This is also supported by the abasic residue **S** showing $T_{\rm m}$ values of ~33°C against the canonicals. Thus, the presence of a 2-methylthio group of **2b** harmonizes

the base pairing and stabilizes the DNA duplexes by stacking interactions resulting in universal base pairing properties.

However, this is not the case with the unusually linked nucleoside 3c (Table 7). Compound **3c** does not show universal base pairing properties of the nucleoside 3a and forms two sets of duplexes showing similar stabilities. It gives maximum stabilization when located opposite dA and dC than those opposite dG and dT. The effect of the 2-MeS group of the N^8 isomer **3c** is exactly similar to that of the 2-chloro group of 3b. The base pair motifs of **3b** are already suggested by He et al.^[14] According to that, the 2-MeS group of the nucleoside 3c must be located in the major groove of DNA helices. In case of 3c-dC or 3c-dA base pairs, the 2-MeS substituent is well accommodated in the major groove and has enough steric freedom during its interaction with the substituents of the cognate base. This may result to the maximum stabilization opposite to dC or dA. By contrast, when 3c is situated opposite to dT or dG, the 2-MeS group clashes with the oxo groups of dT or dG resulting in 6–7°C lower $T_{\rm m}$ values than that of 3c-dC or 3c-dA base pairs. Note that all the duplexes are more stable than those containing the abasic residue **S** (Table 6).

EXPERIMENTAL

General

All chemicals were purchased from Aldrich, Acros, Sigma, or Fluka (Sigma-Aldrich Chemie GmbH, Deisenhofen, Germany). Solvents were of laboratory grade. Thin layer chromatography (TLC) silica gel 60 F_{254} (0.2 mm) (VWR, Damstadt, Germany) and flash chromatography (FC) with 0.4 bar on silica gel 60 H (VWR, Darmstadt, Germany). NMR Spectra were measured on an Avance-DPX-250 spectrometer (Bruker, Germany), 250.13 MHz for ¹H, 62.89MHz for ¹³C, 101.256Hz for ³¹P, δ values are in ppm related to internal SiMe₄ (¹H, ¹³C) or external H₃PO₄. Elemental analyses were performed by Mikroanalytisches Labor Beller (Göttingen, Germany).

3-Chloro-4-methoxy-1*H***-pyrazolo**[**3**,**4**-**d**]**pyrimidine** (**4**). N-Chlorosuccinimide (5.0 g, 37.45 mmol) was added to a solution of 4-methoxy-1Hpyrazolo[**3**,**4**-**d**]**pyrimidine**^[1,18] (2.81 g, 18.72 mmol) in anh. DMF (50 mL). After stirring for 32 h at 50°C, the solvent was removed in vacuo. The residue was applied to FC (column 50 × 3.5 cm). Elution was performed with CH₂Cl₂/MeOH, 98:2 (300 mL) followed by 95:5 (300 mL) affording compound **4** as a white solid (2.4 g, 69%). TLC (CH₂Cl₂/MeOH 9:1): R_f 0.57; UV (MeOH) λ_{max} 246 (ε 6600); ¹H-NMR (DMSO-d₆) δ 4.10 (s, 3 H, OCH₃), 8.56 (s, 1 H, H-6), 14.20 (s, 1 H, NH); Anal. Calc. for C₆H₅N₄OCl (184.58): C 39.04, H 2.73, N 30.35, Cl 19.21, found: C 39.34, H 2.86, N 30.65, Cl 19.34.

3-Chloro-1-[2-deoxy-3,5-di-O-(p-toluoyl)-β-D-erythro-pentofuranosyl]-4methoxy-1*H*-pyrazolo[3,4-d]pyrimidine (6). To a suspension of compound 4 (370 mg, 2.01 mmol) in MeCN (50 mL), KOH (85%, 214 mg, 3.81 mmol) and TDA-1 (*tris*[2-(2-methoxyethoxy)ethyl]amine, 35μ L, 0.11 mmol) were added. After stirring at r.t. for 10 min, 2-deoxy-3, 5-di-O-p-toluoyl- α -D-erythropentofuranosyl chloride (5)^[20,21] (1.00 g, 2.57 mmol) were added, and stirring was continued for another 30 min.^[4] Insoluble material was filtered off, the solvent evaporated, and the residue subjected to FC (column 40 \times 2.5 cm). Elution was performed with petroleum ether/ethyl acetate, 3:1(300 mL), 2:1 (300 mL), and 1:1 (300 mL). Compound 6 was crystallized from petroleum ether/ethyl acetate yielding colorless needles (344 mg, 32%). TLC (petroleum ether/ethyl acetate 2:1): $R_f 0.6$; UV (MeOH) λ_{max} 241 (ε 23,500); ¹H-NMR (DMSO-d₆) δ 2.37, 2.40 (2s, 6 H, 2 CH₃), 2.78 (m, 1 H, H_{α} -2'), 3.18 (m, 1 H, H_{β} -2'), 4.13 (s, 3 H, OCH₃), 4.47 (m, 2 H, H-5'), 4.56 (m, 1 H, H-4'); 5.81 (m, 1 H, H-3'), 6.82 (t, 1 H, I = 6.20, H-1'), 7.30–7.96 (m, 8 H, arom), 8.68 (s, 1 H, H-6); Anal. Calc. for C₂₇H₂₅N₄O₆Cl (536.96): C 60.39, H 4.69, N 10.43; found: C 60.42, H 4.78, N 10.39.

3-Chloro-1-(2-deoxy-β-D-*erythro***-pentofuranosyl)-4-methoxy-1***H***-pyrazo-lo**[**3,4-d**]**pyrimidine (7).** Compound **6** (343.9 mg, 0.64 mmol) was stirred for 4 h in 0.4 M NaOMe/MeOH (150 mL). The solution was evaporated to dryness, and the residue was subjected to FC (column 40 × 2.5 cm, CH₂Cl₂/MeOH 9:1). Compound **7** (131 mg, 68%) was obtained as a white solid. TLC (CH₂Cl₂/MeOH 9:1): R_f 0.6; UV (MeOH) λ_{max} 271 (ε 7400), 246 (ε 9100); ¹H-NMR (DMSO-d₆) δ 2.31 (m, 1 H, H_α-2'), 2.80 (m, 1 H, H_β-2'), 3.48 (m, 2 H, H-5'), 3.82 (m, 1 H, H-4'), 4.12 (s, 3 H, OCH₃), 4.43 (m, 1 H, H-3'), 4.71 (t, 1 H, *J* = 5.77, OH-5'), 5.33 (d, 1 H, *J* = 4.69, OH-3'), 6.62 (t, 1 H, *J* = 6.67, H-1'), 8.67 (s, 1 H, H-6); Anal. Calc. for C₁₁H₁₃N₄O₄Cl (300.70): C 43.94, H 4.36, N 18.63; found: C 44.04, H 4.26, N 18.56.

4-Amino-3-chloro-1-(2-deoxy-β-D-*erythro*-pentofuranosyl)-1*H*-pyrazolo [3,4-d]pyrimidine (1b). Compound 7 (435.9 mg, 1.45 mmol) was suspended in sat. NH₃/MeOH (0°C) solution (200 mL) and the reaction mixture were stirred at 90°C for 4 h in a steel bomb. After cooling the solvent was removed in vacuo, and the residue was applied to FC (column 40 × 2.5 cm, CH₂Cl₂/MeOH 95:5). Compound 1b (256 mg, 62%) was obtained as a white solid. TLC (CH₂Cl₂/MeOH 9:1): R_f 0.3; UV (MeOH) λ_{max} 228 (ε 7400), 260 (ε 7500), 280 (ε 10,300); ¹H-NMR (DMSO-d₆) δ 2.24 (m, 1 H, H_α-2'), 2.75 (m, 1 H, H_β-2'), 3.47 (m, 2 H, H-5'), 3.78 (m, 1 H, H-4'), 4.39 (m, 1 H, H-3'), 4.76 (t, 1 H, *J* = 5.55, OH-5'), 5.29 (d, 1 H, *J* = 4.36, OH-3'), 6.51 (t, 1 H, *J* = 6.30, H-1'), 7.18, 8.07 (br, 2 H, NH₂), 8.23 (s, 1 H, H-6); Anal. Calc. for C₁₀H₁₂N₅O₃Cl (285.69): C 42.04, H 4.23, N 24.51; found: C 42.20, H 4.16, N 24.39.

F. Seela et al.

3-Chloro-1-(2-deoxy-β-D-*erythro*-**pentofuranosyl)**-4-{[(dimethylamino) **methylidene]amino}**-1*H*-**pyrazolo**[**3,4-d**]**pyrimidine** (13). A solution of compound **1b** (200 mg, 0.7 mmol) in MeOH (20 mL) was treated with *N*,*N*dimethylformamide dimethyl acetal (1.62 mL, 12.1 mmol) for 20 min at r.t. After evaporation, the residue was applied to FC (column 12 × 3.0 cm, CH₂Cl₂/MeOH 95:5). Compound **13** was isolated as foam (226 mg, 95%). TLC (CH₂Cl₂/MeOH 9:1): R_f 0.45; UV (MeOH) λ_{max} 320 (ε 32,000); ¹H-NMR (DMSO-d₆) δ 2.27 (m, 1 H, H_α-2'), 2.76 (m,1 H, H_β-2'), 3.19, 3.24 (2s, 6 H, Me₂N), 3.46 (m, 2 H, H-5'), 3.81 (m, 1 H, H-4'), 4.41 (m, 1 H, H-3'), 4.76 (t, 1 H, *J* = 5.66, OH-5'), 5.29 (d, 1 H, *J* = 4.50, OH-3'), 6.56 (t, 1 H, *J* = 6.39, H-1'), 8.45 (s, 1 H, H-6), 8.95 (s, 1 H, N=CH); Anal. Calc. for C₁₃H₁₇N₆O₃Cl (340.77): C 45.82, H 5.03, N 24.66; found: C 46.13, H 5.10, N 24.12.

3-Chloro-1-(2-deoxy-5-O-(4,4'-dimethoxytriphenylmethyl)- β -D-erythro $pentofuranosyl)-4-{[(dimethylamino)methylidene]amino}-1H-pyrazolo$ [3,4-d]pyrimidine (14). To a solution of compound 13 (180.0 mg, 0.53) mmol) in dry pyridine (1.5 mL) was added 4,4'-dimethoxytriphenylmethyl chloride (217.0 mg, 0.64 mmol). After stirring at r.t. for 2 h, the mixture was poured into ice-cold 3% aq. NaHCO₃ soln. (5 mL), the aq. layer was extracted with CH_2Cl_2 (2 × 50 mL), the combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was applied to FC (column 12×3 cm, CH₂Cl₂/MeOH 95:5). Compound 14 was isolated as colorless foam (291 mg, 86%). TLC (CH₂Cl₂/MeOH 9:1): $R_f 0.5$; UV (MeOH) λ_{max} 233 (ε 28,700), 320 (ε 29,500); ¹H-NMR (DMSO-d₆) δ 2.31 (m, 1 H, H_{α}-2'), 2.76 (m,1 H, H₃-2'), 3.18, 3.23 (2s, 6 H, Me₂N), 3.07 (m, 2 H, H-5'), 3.68 (2s, 6 H, 2 MeO), 3.92 (m, 1 H, H-4'), 4.53 (m, 1 H, H-3'), 5.35 (d, 1 H, I = 100)4.85, OH-3', 6.59 (2d, 1 H, I = 4.13, H-1'), 6.71-7.32 (m, 13 H, arom), 8.49(s, 1 H, H-6), 8.95 (s, 1 H, N=CH); Anal. Calc. for C₃₄H₃₅N₆O₅Cl (643.13): C 63.50, H 5.49, N 13.07; found: C 63.47, H 5.38, N 12.89.

3-Chloro-1-(2-deoxy-5-*O*-(4,4'-dimethoxytriphenylmethyl)-β-D-*erythro*pentofuranosyl)-4-{[(dimethylamino)methylidene]amino}-1*H*-pyrazolo [3,4-d]pyrimidine 3'-*O*-[(2-Cyanoethyl) *N*,*N*-Diisopropylphosphoramidite] (15). To a solution of compound 14 (237.8 mg, 0.37 mmol) in dry CH₂Cl₂ (20 mL) anh. *N*,*N*-diisopropylethylamine (0.118 mL, 0.68 mmol) and chloro(2-cyanoethoxy) (*N*,*N*-diisopropylamino)phosphine (0.118 mL, 0.53 mmol) were added under Ar. After stirring for 30 min, the reaction mixture was diluted with CH₂Cl₂ (20 mL), and 5% aq. NaHCO₃ (10 mL) was added. The mixture was extracted with CH₂Cl₂ (2 × 10 mL), the organic layers were dried (Na₂SO₄), filtered, and evaporated. The residue was applied to FC (column 12 × 2 cm, CH₂Cl₂/acetone, 92:8). Compound **15** was isolated as foam (187 mg, 60%). TLC (CH₂Cl₂/acetone 9:1): R_f 0.6, 0.7. ³¹P-NMR (CDCl₃) δ 149.64, 149.53.

6-Methylthio-4-isopropoxy-1*H***-pyrazolo**[**3**,**4***-d*]**pyrimidine** (**8**). A solution of 6-methylthio-4-chloro-1*H*-pyrazolo[**3**,**4***-d*]**pyrimidine**^[19] (5.0 g, 24.91 mmol) in 1 M sodium isopropoxide in isopropanol (200 mL) was refluxed for 2 h. Upon cooling NaCl was precipitated with Et₂O and was filtered off. The filtrate was neutralized with acetic acid and evaporated to dryness. The residue was dissolved in 200 mL of methanol. An addition of ice-cold water precipitated out **8** as pale yellow needles (4.10 g, 73%). TLC (CH₂Cl₂/MeOH 95:5): *R*_f 0.48. UV (MeOH) λ_{max} 278 (ε 12,300), 236 (ε 18,600); ¹H-NMR (DMSO-d₆) δ 1.36, 1.39 (2s, 6 H, 2 CH₃), 2.52 (s, 3 H, CH₃S), 5.54 (m, 1 H, CH), 8.04 (s, 1 H, H-3), 13.72 (br s, 1 H, NH); Anal. Calc. for C₉H₁₂N₄OS (224.28): C 48.20, H 5.39, N 24.98; found: C 48.18, H 5.25, N 24.81.

1-[2-Deoxy-3,5-di-*O*-(*p*-toluoyl)-*β*-D-*erythro*-pentofuranosyl]-6-methylthio-4-isopropoxy-1*H*-pyrazolo[3,4-*d*]pyrimidine (9). A solution of 8 (500 mg, 2.23 mmol) and KOH (500 mg, 8.91 mmol) was stirred in MeCN for 15 min and followed by the addition of TDA-1 (81 μ L, 0.25 mmol). After 15 min 1-chloro-2-deoxy-3,5-di-*O*-toluoyl-*α*-D-*erythro*-pentofuranose (5)^[20,21] (1.04 g, 2.68 mmol) was added in portions. The reaction mixture was stirred for another 15 min and filtered. The filtrate was concentrated and applied to FC (column 15 × 3 cm, CH₂Cl₂/MeOH 98:2). The fast migrating zone furnished **9** as colorless foam (688 mg, 54%). TLC (CH₂Cl₂/MeOH 98:2): $R_{\rm f}$ 0.6. UV (MeOH) $\lambda_{\rm max}$ 279 (ε 15,700), 238 (ε 49,300); ¹H-NMR (DMSO-d₆) δ 1.39 (br s, 6 H, 2 CH₃), 2.39 (br s, 6 H, 2 CH₃O), 2.58 (s, 3 H, CH₃S), 2.79 (m, 1 H, H_α-2'), 3.37 (m, H_β-2', D₂O), 4.40–4.52 (m, 3 H, H-4', H-5'), 5.53 (m, 1 H, CH), 5.86 (m, 1 H, H-3'), 6.76 (m, 1 H, H-1'), 7.33–7.98 (m, 8 H, arom), 8.19 (s, 1 H, H-3); Anal. Calc. for C₃₀H₃₂N₄O₆S (576.66): C 62.48, H 5.59, N 9.72; found: C 62.69, H 5.47, N 9.58.

2-[2-Deoxy-3,5-di-*O*-(*p*-toluoyl)-*β*-D-*erythro*-pentofuranosyl]-6-methylthio-4-isopropoxy-2*H*-pyrazolo[3,4-*d*]pyrimidine (10). The slow migrating zone afforded 10 as colorless foam (375 mg, 29%). TLC (CH₂Cl₂/MeOH 98:2): R_f 0.5. UV (MeOH) λ_{max} 282 (ε 11,700), 240 (ε 51,100): ¹H-NMR (DMSO-d₆) δ 1.34, 1.36 (2s, 6 H, (CH₃)₂CH), 2.35, 2.40 (2s, 6 H, 2 CH₃O), 2.54 (s, 3 H, CH₃S), 2.79 (m, 1 H, H_{α}-2'), 3.18 (m, 1 H, H_{β}-2'), 4.43–4.64 (m, 3 H, H-4', H-5'), 5.49 (m, 1 H, OCH), 5.87 (m, 1 H, H-3'), 6.50 (t, 1 H, J = 5.43, H-1'), 7.22–7.95 (m, 8 H, arom), 8.70 (s, 1 H, H-3); Anal. Calc. for C₃₀H₃₂N₄O₆S (576.66): C 62.48, H 5.59, N 9.72; found: C 62.68, H 5.56, N 9.78.

F. Seela et al.

1-[2-Deoxy-β-D-*erythro*-**pentofuranosyl]-6-methylthio-4-isopropoxy-1***H*-**pyrazolo[3,4-***d***]pyrimidine (11).** A suspension of **9** (3 g, 5.20 mmol) in 200 mL of 0.1 M NaOiPr was stirred for 15 min. The clear solution was evaporated and applied to FC (column 12×3 cm). Stepwise elution with 2% MeOH in CH₂Cl₂, followed by 10% MeOH in CH₂Cl₂, gave **11** as a colorless solid (1.5 g, 85%). TLC (CH₂Cl₂/MeOH 95:5): *R*_f 0.25. UV (MeOH) λ_{max} 279 (ε 14,500), 238 (ε 18,800); ¹H-NMR (DMSO-d₆) δ 1.37, 1.39 (2s, 6 H, 2 CH₃), 2.58 (s, 3 H, CH₃S), 2.28 (m, 1 H, H_α-2'), 2.82 (m, 1 H, H_β-2'), 3.49 (m, 2 H, H-5'), 3.80 (m, 1 H, H-4'), 4.45 (m, 1 H, H-3'), 4.71 (m, 1 H, OH-5'), 5.30 (m, 1 H, OH-3'), 5.56 (m, 1 H, CH), 6.61 (t, 1 H, *J* = 6.36, H-1'), 8.15 (s, 1 H, H-3); Anal. Calc. for C₁₄H₂₀N₄O₄S (340.40): C 49.40, H 5.92, N 16.46; found: C 49.68, H 5.83, N 16.29.

2-[2-Deoxy-β-D-*erythro*-**pentofuranosyl]-6-methylthio-4-isopropoxy-2***H***-pyrazolo**[**3**,**4**-*d*]**pyrimidine (12).** As described for **11**, compound **10** (3 g, 5.20 mmol) gave **12** as a colorless solid (1.6 g, 90%). TLC (CH₂Cl₂/MeOH 9:1): $R_{\rm f}$ 0.48. UV (MeOH) $\lambda_{\rm max}$ 282 (ε 10,800), 240 (ε 19,700), 227 (ε 17,500); ¹H-NMR (DMSO-d₆) δ 1.35, 1.38 (2s, 6 H, (CH₃)₂CH), 2.51 (s, 3 H, CH₃S), 2.34 (m, 1 H, H_α-2'), 2.62 (m, 1 H, H_β-2'), 3.61 (m, 2 H, H-5'), 3.89 (m, 1 H, H-4'), 4.40 (m, 1 H, H-3'), 4.95 (m, 1 H, OH-5'), 5.35 (m, 1 H, OH-3'), 5.52 (m, 1 H, (CH₃)₂CH), 6.27 (t, 1 H, *J* = 6.11, H-1'), 8.71 (s, 1 H, H-3); Anal. Calc. for C₁₄H₂₀N₄O₄S (340.40): C 49.40, H 5.92, N 16.46; found: C 49.37, H 5.80, N 16.41.

4-Amino-1-[2-deoxy-β-D-*erythro*-pentofuranosyl]-6-methylthio-1*H*-pyrazolo[3,4-*d*]pyrimidine (2b). A suspension of 11 (200 mg, 0.59 mmol) in methanol, saturated with dry ammonia (100 mL), was stirred in a glass sealed bottle for 5 days at r.t. The clear solution was adsorbed on silica gel and applied to FC (column 15 × 3 cm, CH₂Cl₂/MeOH 9:1). Compound **2b** was isolated as a colorless solid (160 mg, 92%). TLC (CH₂Cl₂/MeOH 9:1): $R_{\rm f}$ 0.48. UV (MeOH) $\lambda_{\rm max}$ 278 (ε 14,600), 242 (ε 28,800); ¹H-NMR (DMSOd₆) δ 2.48 (s, 3 H, CH₃S), 2.25 (m, 1 H, H_α-2'), 2.81 (m, 1 H, H_β-2'), 3.51 (m, 2 H, H-5'), 3.79 (m, 1 H, H-4'), 4.42 (m, 1 H, H-3'), 4.73 (t, 1 H, J =5.75, OH-5'), 5.27 (d, 1 H, J = 4.47, OH-3'), 6.50 (t, 1 H, J = 6.5, H-1'), 7.71, 7.88 (m, 2 H, NH₂), 8.05 (s, 1 H, H-3); Anal. Calc. for C₁₁H₁₅N₅O₃S (297.33): C 44.43, H 5.08, N 23.55; found: C 44.48, H 5.03, N 23.46.

4-Amino-2-[2-deoxy-β-D-*erythro***-pentofuranosyl]-6-methylthio-2H-pyrazolo[3,4-d]pyrimidine (3c).** As described for **2b**, compound **3c** was obtained from **12** (200 mg, 0.59 mmol) as a colorless solid (160 mg, 92%). TLC (CH₂Cl₂/MeOH 95:5): $R_{\rm f}$ 0.5. UV (MeOH) $\lambda_{\rm max}$ 278 (ε 11,500), 240 (ε 21,500);¹H-NMR (DMSO-d₆) δ 2.51 (s, 3 H, CH₃S), 2.32 (m, 1 H, H_α-2'), 2.62 (m, 1 H, H_β-2'), 3.43–3.57 (m, 2 H, H-5'), 3.89 (m, 1 H, H-4'), 4.37 (m, 1 H, H-3'), 4.87 (m, 1 H, OH-5'), 5.31 (d, 1 H, J = 4.31, OH-3'), 6.26 (t, 1 H, J = 6.14, H-1'), 7.69 (m, 2 H, NH₂), 8.42 (s, 1 H, H-3); Anal. Calc. for C₁₁H₁₅N₅O₃S (297.33): C 44.43, H 5.08, N 23.55; found: C 44.55, H 5.02, N 23.46.

1-[2-Deoxy-β-D-*erythro*-pentofuranosyl]-4{[(dimethylamino)methylidene]amino}-6-methylthio-1*H*-pyrazolo[3,4-*d*]pyrimidine (16). A solution of compound **2b** (250 mg, 0.84 mmol) in MeOH was stirred with *N*,*N*-dimethylformamide dimethylacetal (1.4 g) at 50°C for 6 h. The solution was evaporated and applied to FC (column 20 × 3 cm, CH₂Cl₂/MeOH 95:5) to give compound **16** as colorless solid (250 mg, 84.4%). TLC (CH₂Cl₂/MeOH 95:5): $R_{\rm f}$ 0.4. UV (MeOH) $\lambda_{\rm max}$ 315 (ε 17,400), 292 (ε 18,300), 272 (ε 16,400), 245 (ε 18,700); ¹H-NMR (DMSO-d₆) δ 2.55 (s, 3 H, CH₃S), 2.28 (m, 1 H, H_α-2'), 2.85 (m, 1 H, H_β-2'), 3.15, 3.23 (2s, 6 H, 2 CH₃), 3.38–3.54 (m, 2 H, H-5'), 3.82 (m, 1 H, H-4'), 4.44 (m, 1 H, H-3'), 4.74 (t, 1 H, J = 5.72, OH-5'), 5.30 (d, 1 H, J = 4.44, OH-3'), 6.56 (t, 1 H, J = 6.43, H-1'), 8.06 (s, 1 H, N=CH), 8.86 (s, 1 H, H-3); Anal. Calc. for C₁₄H₂₀N₆O₃S (352.41): C 47.71, H 5.72, N 23.85; found: C 47.41, H 5.80, N 23.67.

1-[2-Deoxy-β-D-*erythro*-pentofuranosyl]-4{[(dimethylamino)ethylidene] amino}-6-methylthio-1*H*-pyrazolo[3,4-*d*]pyrimidine (17). A solution of compound 2b (150 mg, 0.50 mmol) in MeOH was stirred with *N*,*N*-dimethylacetamide dimethylacetal (1 mL) at 40°C for 16 h. The solution was evaporated and applied to FC (column 20 × 3 cm, CH₂Cl₂/acetone 8:2) to give compound 17 as colorless solid (170 mg, 92%). TLC (CH₂Cl₂/acetone 8:2): $R_{\rm f}$ 0.38. UV (MeOH) $\lambda_{\rm max}$ 219 (ε 13,800), 269 (ε 12,400), 246 (ε 20,300); ¹H-NMR (DMSO-d₆) δ 2.26 (s, 3 H, CH₃), 2.51 (s, 3 H, CH₃S), 2.27 (m, 1 H, H_α-2'), 2.85 (m, 1 H, H_β-2'), 3.15, 3.23 (2s, 6 H, 2 CH₃), 3.38– 3.54 (m, 2 H, H-5'), 3.82 (m, 1 H, H-4'), 4.44 (m, 1 H, H-3'), 4.71 (t, 1 H, J = 5.70, OH-5'), 5.27 (d, 1 H, J = 4.41, OH-3'), 6.56 (t, 1 H, J = 6.43, H-1'), 7.96 (s, 1 H, H-3); Anal. Calc. for C₁₅H₂₂N₆O₃S (366.44): C 49.17, H 6.05, N 22.93; found: C 49.26, H 6.10, N 22.78.

1-[2-Deoxy-5-*O*-(4,4'-dimethoxytriphenylmethyl)-β-D-*erythro*-pentofuranosyl] - 4{[(dimethylamino)ethylidene]amino}-6-methylthio-1*H*-pyrazolo [3,4-*d*]pyrimidine (18). Compound 17 (125 mg, 0.34 mmol) in 2 mL of pyridine was stirred with (MeO)₂TrCl (150 mg, 0.44 mmol) at r.t. for 2.5 h. The reaction was quenched by the addition of 5% NaHCO₃ solution (10 mL) and extracted with dichloromethane (3 × 15 mL). The organic layer was dried over Na₂SO₄ and evaporated. The resulting residue was subjected to FC (column 15 × 3 cm, CH₂Cl₂/acetone 9:1) to give compound 18 as colorless foam (192 mg, 84%). TLC (CH₂Cl₂/acetone 9:1): $R_{\rm f}$ 0.55. UV (MeOH) $\lambda_{\rm max}$ 282 (ε 14,300), 273 (ε 14,600), 237 (ε 33,600); ¹H-NMR (DMSO-d₆) δ 2.22 (s, 3 H, CH₃), 2.51 (s, 3 H, CH₃S), 2.32 (m, 1 H, H_α-2'), 2.84 (m, 1 H, H_β-2'), 3.15, 3.23 (2s, 6 H, 2 CH₃), 3.02–3.15 (m, 2 H, H-5'), 3.71, 3.72 (2s, 6 H, 2 CH₃O), 3.93 (m, 1 H, H-4'), 4.56 (m, 1 H, H-3'), 5.31 (d, 1 H, J = 4.83, OH-3'), 6.58 (m, 1 H, H-1'), 7.90 (s, 1 H, H-3), 6.74–7.32 (m, 13 H, arom); Anal. Calc. for C₃₆H₄₀N₆O₅S (668.81): C 64.65, H 6.03, N 12.57; found: C 65.04, H 6.04.

1-[2-Deoxy-5-*O*-(4,4'-dimethoxytriphenylmethyl)-β-D-*erythro*-pentofuranosyl]-4{[(dimethylamino)ethylidene]amino}-6-methylthio-1*H*-pyrazolo[3, 4-*d*]pyrimidine 3'-[(2-Cyanoethyl)-N,N-diisopropyl-phosphoramidite] (19). To a soln. of compd. 18 (90 mg, 0.14 mmol) and (iPr)₂EtN (30 μ L, 0.17 mmol) in anh. CH₂Cl₂ (2 mL), 2-cyanoethyl diisopropylphosphoramidochloridite (50 μ L, 0.29 mmol) was added at r.t.. After stirring for 20 min, the mixture was diluted with CH₂Cl₂ (10 mL) and quenched by adding a 5% aq. NaHCO₃ soln. (20 mL). Then, the aq. layer was extracted with CH₂Cl₂ (3 × 15 mL), the combined org. layer dried over Na₂SO₄ and evaporated. The resulting oil was applied to FC (column 10 × 3 cm, CH₂Cl₂/acetone 95:5) affording colorless foam (85 mg, 73%). TLC (CH₂Cl₂/acetone 95:5): *R*_f 0.52, 0.48. ³¹P-NMR (CDCl₃) δ 149.9, 149.6.

2-[2-Deoxy- β -D-*erythro*-[pentofuranosyl]-4{[isobutyryl]amino}-6-methylthio-2H-pyrazolo[3,4-d]pyrimidine (20). Compound 3c (200 mg, 0.67 mmol) was repeatedly evaporated with pyridine and suspended in pyridine (2 mL). TMSCl (1.15 mL, 9.06 mmol) was added and stirred for 30 min, followed by the addition of isobutyryl chloride (0.14 mL, 1.34 mmol) and stirring was continued for 2 h at r.t. The reaction mixture was cooled in an ice-bath, 1 mL H_2O was added. After 5 min, 1 mL 25% aq. NH₃-soln. was added, and the solution stirred for 15 min more. The solution evaporated to dryness, dissolved in 10 mL H₂O, and extracted with CH_2Cl_2 (3 × 15 mL).The organic layer was dried over Na₂SO₄, evaporated and applied to FC (column 15×3 cm, CH₂Cl₂/MeOH 95:5). Compound **20** was obtained as colorless foam (150 mg 60.69%). TLC (CH₂Cl₂/MeOH 95:5): $R_{\rm f}$ 0.46. UV (MeOH) λ_{max} 297 (ε 10,800), 245 (ε 16,400), 216 (ε 14,000); ¹H-NMR $(DMSO-d_6) \delta 1.13, 1.14 (2s, 6 H, 2 CH_3), 2.52 (s, 3 H, CH_3S), 2.34 (m, 1 H, 1)$ $H_{\alpha}-2'$), 2.67 (m, 1 H, $H_{\beta}-2'$), 2.89 (m, 1 H, $CH(CH_3)_2$), 3.48–3.61 (m, 2 H, H-5'), 3.92 (m, 1 H, H-4'), 4.45 (m, 1 H, H-3'), 4.86 (t, 1 H, J = 5.55, OH-5'), 5.32 (d, 1 H, I = 4.4, OH-3'), 6.41 (t, 1 H, I = 5.8, H-1'), 8.91 (s, 1 H, H-3), 11.2 (s, 1 H, NH); Anal. Calc. for C₁₅H₂₁N₅O₄S (367.42): C 49.03, H 5.76, N 19.06; found: C 48.96, H 5.65, N 18.89.

2-[2-Deoxy-5-O-(4,4'-dimethoxytriphenylmethyl)- β -D-*erythro*-pentofuranosyl]-4{[isobutyryl]amino}-6-methylthio-2*H*-pyrazolo[3,4-*d*]pyrimidine (21). To a stirred solution of 20 (100 mg, 0.27 mmol) in anhydrous pyridine (2 mL) was added 4-dimethylaminopyridine (25 mg, 0.20 mmol), followed by (MeO)₂TrCl (125 mg, 0.37 mmol). The reaction was worked up as described for **18**. Compound **21** was obtained as colorless foam (107 mg, 59%). TLC (CH₂Cl₂/acetone 9:1): $R_{\rm f}$ 0.62. UV (MeOH) $\lambda_{\rm max}$ 275 (ε 12,200), 236 (ε 30,300); ¹H-NMR (DMSO-d₆) δ 1.13, 1.14 (2s, 6 H, 2 CH₃), 2.53 (s, 3 H, CH₃S), 2.34 (m, 1 H, H_{\alpha}-2'), 2.83 (m, 1 H, H_{\beta}-2'), 2.86 (m, 1 H, CH(CH₃)₂), 3.10–3.31 (m, 2 H, H-5'), 3.67, 3.69 (2s, 6 H, 2 CH₃O), 3.98 (m, 1 H, H-4'), 4.50 (m, 1 H, H-3'), 5.36 (d, 1 H, J = 5.0, OH-3'), 6.45 (m, 1 H, H-1'), 8.94 (s, 1 H, H-3), 11.21 (s, 1 H, NH), 6.70-7.29 (m, 13 H, arom); Anal. Calc. for C₃₆H₃₉N₅O₆S (669.79): C 64.56, H 5.87, N 10.46; found: C 64.60, H 5.99, N 10.40.

2-[2-Deoxy-5-*O*-(**4**,**4**'-dimethoxytriphenylmethyl)-β-D-*erythro*-pentofuranosyl]-**4**{[isobutyryl]amino}-6-methylthio-2*H*-pyrazolo[**3**,**4**-*d*]pyrimidine **3**'-[(**2-Cyanoethyl)-N,N-diisopropyl-phosphoramidite**] (**22**). As described for **19**, with **21** (70 mg, 0.11 mmol), (iPr)₂EtN (25 μ L, 0.145 mmol) and 2cyanoethyl diisopropylphosphoramidochloridite (50 μ L, 0.22 mmol): **22** (70 mg, 77%). Colorless foam. TLC (CH₂Cl₂/acetone 95:5): *R*_f 0.60, 0.58. ³¹P-NMR (CDCl₃) δ 150.1, 150.4.

Oligonucleotides

The synthesis was performed with DNA solid phase synthesizer, Model 392 (Applied Biosystems, Weiterstadt, Germany) with "trityl-on" mode. The oligonucleotides were purified and desalted by HPLC with RP-18 (5 μ m, 4 \times 250 mm and 4×125 mm) (LiChrospher[®], Merck, Germany), lyophilized with SpeedVac centrifuge (Savant Instruments, Farmingdale, New York). MALDI-TOF spectra were measured with Biflex III spectrometer (Bruker Saxonia, Leipzig, Germany). Melting curves were measured with a Cary 1/1E UV/VIS spectrophotometer (Varian, Australia) equipped with a thermoelectrical controller; the actual temperature was measured in the reference cell with a PT-100 resistor. UV-spectra were measured on U-3200 spectrophotometer (Hitachi, Japan). The oligonucleotides were cleaved from the solid support by 25% aq. NH₃-soln., and purified by HPLC with the gradient: 3 min 20% B in A, 12 min 20-40% B in A with a flow rate of 1.0 mL/min (A, 0.1 M (Et₃NH) OAc (pH 7.0)/MeCN 95:5; B, MeCN). They were detritylated with 2.5% dichloroacetic acid in dichloromethane, lyophilized, and coevaporated with methanol. The residue was dissolved in bidistilled water and purified by HPLC with the gradient 20 min 0-20% B in A with a flow rate of 1 mL/min. The purified oligonucleotides were desalted with water and eluted with water/methanol (3:2). The oligonucleotides were characterized by MALDI-TOF mass spectrometry (Table 2).

CONCLUSION

The 8-aza-7-deazaadenine 2'-deoxyribonucleosides **1b** with a chloro residue at the 7-position strengthen the dA-dT base pair stability, as it was shown for related oligonucleotides containing bromine or iodine at that position. On the other hand, 2-chloro or 2-methylthio groups have an unfavorable influence on the duplex stability, leading to harmonization of base pair stability when **2b** is located opposite to dC and dA. Thus, this nucleoside can be considered as a universal nucleoside. A universal base pairing was also reported for the N⁸-glycosylated nucleoside. However, the ambiguous base pairing of **3c** is not so striking. It forms two sets of duplex stability showing a maximum stabilization against dA or dC than that of dG or dT.

REFERENCES

- Seela, F.; Steker, H. Facile synthesis of 2'-deoxyribofuranosides of allopurinol and 4-amino-1Hpyrazolo[3,4-d]pyrimidine via phase-transfer glycosylation. Helv. Chim. Acta 1985, 68, 563–570.
- Seela, F.; Kaiser, K. 8-Aza-7-deazaadenine N⁸- and N⁹-(β-D-2'-deoxyribofuranosides): Building blocks for automated DNA synthesis and properties of oligodeoxyribonucleotides. Helv. Chim. Acta 1988, 71, 1813–1823.
- Seela, F.; Zulauf, M.; Debelak, H. Base-pairing properties of 8-aza-7-deazaadenine linked via the 8-position to the DNA backbone. Helv. Chim. Acta 2000, 83, 1437–1453.
- Seela, F.; Zulauf, M. Synthesis of oligonucleotides containing pyrazolo [3,4-d]-pyrimidines: The influence of 7-substituted 8-aza-7-deazaadenines on the duplex structure and stability. J. Chem. Soc., Perkin Trans. 1 1999, 479–488.
- He, J.; Seela, F. Propynyl groups in duplex DNA: Stability of base pairs incorporating 7-substituted 8-aza-7-deazapurines or 5-substituted pyrimidines. Nucleic Acids Res. 2002, 30, 5485–5496.
- Seela, F.; He, Y.; He, J.; Becher, G.; Kröschel, R.; Zulauf, M.; Leonard, P. Base-modified oligonucleotides with increased duplex stability: Pyrazolo[3,4-d]pyrimidines replacing purines. In *Methods in Molecular Biology*, in *Oligonucleotide Synthesis: Methods and Applications*; Herdewijn, P., Ed.; Humana Press Inc.: Totowa NJ, 2004; vol. 288, 165–186.
- Huang, M.C.; Hatfield, K.; Roetker, A.W.; Montgomery, J.A.; Blakley, R.L. Analogs of 2'-deoxyadenosine: Facile enzymatic preparation and growth inhibitory effects on human cell lines. Biochem. Pharmacol. 1981, 30, 2663–2671.
- Huang, M.C.; Avery, T.L.; Blakley, R.L.; Secrist, J.A. III; Montgomery, J.A. Improved synthesis and antitumor activity of 2-bromo-2'-deoxyadenosine. J. Med. Chem. 1984, 27, 800–802.
- Secrist, J.A. III; Shortnacy, A.T.; Montgomery, J.A. Synthesis and biological evaluations of certain 2-halo-2'-substituted derivatives of 9-β-D-arabinofuranosyladenine. J. Med. Chem. 1988, 31, 405– 410.
- Christensen, L.F.; Broom, A.D.; Robins M.J.; Bloch, A. Synthesis and biological activity of selected 2,6-disubstituted-(2-deoxy-α- and -β-D-erythro-pentofuranosyl)purines. J. Med. Chem. 1972, 15, 735–739.
- Kazimierczuk, Z.; Vilpo, J.A.; Seela, F. 2-Chloro-2'-deoxyadenosine: Synthesis and antileukemic activity of 8-substituted derivatives. Nucleosides Nucleotides 1995, 14, 1403–1414.
- Seela, F.; Chen, Y.; Bindig, U.; Kazimierczuk, Z. Synthesis of 2'-deoxyisoinosine and related 2'deoxyribonucleosides. Helv. Chim. Acta 1994, 77, 194–202.
- 13. Kazimierczuk, Z.; Mertens, R.; Kawczynski, W.; Seela, F. 2'-Deoxyisoguanosine and base-modified analogues: Chemical and photochemical synthesis. Helv. Chim. Acta **1991**, 74, 1742–1748.
- He, J.; Seela, F. Oligonucleotides incorporating 8-aza-7-deazapurines: Synthesis and base pairing of nucleosides with nitrogen-8 as a glycosylation position. Org. Biomol. Chem. 2003, 1, 1873–1883.

- Kierzek, E.; Kierzek, R. The thermodynamic stability of RNA duplexes and hairpins containing N⁶-alkyladenosines and 2-methylthio-N⁶-alkyladenosines. Nucleic Acids Res. 2003, 31, 4472–4480.
- Esberg, B.; Björk, G.R. The methylthio group (ms²) of N⁶-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms²io⁶A) present next to the anticodon contributes to the decoding efficiency of the tRNA. J. Bacteriol. **1995**, 177, 1967–1975.
- Ikehara, M.; Hattori, M. Synthesis and properties of poly(2-methylthioinosinic acid). Biochim. Biophys. Acta 1972, 269, 27–36.
- Babushkina, T.A.; Leonova, T.S.; Chernyshev, A.I.; Yashunskii, V.G. Study of tautomerism in allopurinol and its methyl derivatives by a carbon-13 NMR spectroscopic method. Khim. Geterotsikl. Soedin. 1979, 11, 1543–1546.
- Robins, R.K. Potential purine antagonists. I. Synthesis of some 4,6-substituted pyrazolo[3,4d]pyrimidines. J. Am. Chem. Soc. 1956, 78, 784–790.
- 20. Hoffer, M. α-Thymidin. Chem. Ber. 1960, 93, 2777–2781.
- Rolland, V.; Kotera, M.; Lhomme, J. Convenient preparation of 2-deoxy-3,5-di-O-p-toluoyl-α-Derythro-pentofuranosyl chloride. Synth. Commun. 1997, 27, 3505–3511.
- Seela, F.; Debelak, H. The N⁸-(2'-deoxyribofuranoside) of 8-aza-7-deazaadenine: A universal nucleoside forming specific hydrogen bonds with the four canonical DNA constituents. Nucleic Acids Res. 2000, 28, 3224–3232.
- 23. Seela, F.; Münster, I.; Löchner, U.; Rosemeyer, H. 8-Azaadenosine and its 2'-deoxyribonucleoside: Synthesis and oligonucleotide base-pair stability. Helv. Chim. Acta **1998**, 81, 1139–1155.
- Seela, F.; Zulauf, M. 7-Deazaadenine-DNA: Bulky 7-iodo substituents or hydrophobic 7-hexynyl chains are well accommodated in the major groove of oligonucleotide duplexes. Chem. Eur. J. 1998, 4, 1781–1790.
- 25. Molar volume values were calculated using the program ChemSketch (version 4.55, provided by Advanced Chemistry Developments Inc., Toronto, Canada; http://www.acdlabs.com).