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A practical solution-phase synthesis of an antagonistic peptide

of TNF-a based on hydrophobic tag strategyw
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A simple acid-resistant hydrophobic tag, which can be removed

rapidly in a single-step procedure after overall peptide synthesis,

has been developed to accomplish practical solution-phase synthesis

of a 15-mer antagonistic peptide of TNF-a (A-TNF-a). Hydro-

phobically tagged peptides can be separated as precipitates at

each step by addition of a polar organic solvent.

Since the pioneering work of Merrifield, peptide synthesis

based on solid-phase techniques has been established to realize

a practical synthesis for both naturally occurring and artificial

peptides, and has also become essential for automated synthesis

and combinatorial chemistry.1–12 The great advantage of solid-

phase synthesis is the facile separation processes, requiring only

filtration. In this context, a wide variety of effective protection/

deprotection methods were developed to elaborate target

sequences. Alternatively, tag-assisted solution-phase synthesis

has also been demonstrated to be an efficient approach,

especially for multi-step reactions.13–21 In this case, high

reaction rate and rapid reaction monitoring are both attained.

The integration of solid-phase separation and solution-phase

synthesis should facilitate highly practical peptide synthesis.

Previously, we developed a solution-phase reaction system

based on a simple hydrophobic tag, 3,4,5-trioctadecyloxy-

benzyl alcohol (HO-TAGa) 1, that could easily be used in

multi-step reactions (Scheme 1).22–27 In particular, 1 can serve

as an effective protecting group for the peptide C-terminus and

as a phase-tag that can selectively be separated from surplus

reagents, including amino acids (AAs) and condensing agents,

in polar reaction solutions. However, C-terminal benzyl

esters are often hydrolyzed under acidic conditions. Thus,

Boc-chemistry could not be applied to this system. This drawback

is crucial when proline is placed at the C-terminus (or next to

the C-terminus), because the formation of diketopiperazines, an

intramolecular cyclized by-product, takes place immediately

under the basic conditions required for N-terminal Fmoc

group deprotection (Scheme 2). This troublesome process

can be prevented under acidic conditions because the nucleo-

philicity of the N-terminus should be significantly decreased

by protonation. Therefore, an acid-resistant hydrophobic tag

would allow for the use of both Boc- and Fmoc-chemistry,

extending the potential uses of hydrophobic tag-based peptide

synthesis. We herein describe the development of a new

hydrophobic tag for peptide synthesis that can be applied in

both Boc- and Fmoc-chemistry. Furthermore, hydrophobically

tagged peptides can be effectively separated as precipitates by

addition of a polar organic solvent. The tag can also be removed

in a single step procedure after overall peptide synthesis

(Scheme 3). We chose a peptide possessing a C-terminal prolyl

residue, i.e., antagonist of tumor necrosis factor-a28 (A-TNF-a),
as the model compound to demonstrate our strategy.

The present work began with the preparation of 2,4-di-

docosyloxybenzyl alcohol (HO-TAGb) 2 and 3,5-didocosyloxy-

benzyl alcohol (HO-TAGc) 3. To evaluate the stability of the

hydrophobic tags 1–3 against the acidic conditions used for

N-terminal Boc group deprotection, N-Boc-leucine was then

introduced to 1–3 using diisopropylcarbodiimide (DIC) in the

presence of a catalytic amount of dimethylaminopyridine

(DMAP) to form hydrophobically tagged N-Boc-leucines

(N-Boc-Leu-O-TAGa–c) 4–6 quantitatively (Scheme 4). When

Scheme 1 Structures of hydrophobic tags (HO-TAGa–c) 1–3 used in

this study.

Scheme 3 General concept of the hydrophobic tag strategy.

Scheme 2 Formation of diketopiperazines from N-Fmoc-AA-Pro-O-

TAGa under basic conditions required for N-terminal Fmoc group

deprotection.
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4–6 were subjected to N-terminal Boc group deprotection

conditions, 6 afforded deprotected product 9 quantitatively,

whereas deprotected products 7 and 8 were not obtained.

Hydrolyzed leucine S1 was recovered from the reaction

mixture, along with decomposition products of 1, by acid

treatment of 4 (Scheme S1 in supporting information). On the

other hand, acid treatment of 5 resulted in the quantitative

formation of red-colored resorcinarene S2 (Scheme S2 in

supporting information). These results indicated that the

C-terminal benzyl esters of 4 and 5 were hydrolyzed under

the acidic conditions required for N-terminal Boc group

deprotection, affording the corresponding benzyl cations

stabilized by ortho- and/or para-alkoxy groups, which then

decomposed and cyclized. Meanwhile, hydrolysis of the

C-terminal benzyl ester of 6 was not observed even when 6

was stirred for 3 days under acidic conditions required for

N-terminal Boc group deprotection, clearly suggesting

that 3 functioned as an acid-resistant hydrophobic tag that will

enable the incorporation of Boc-chemistry. It should also be

emphasized that quantitative amounts of both 6 (Fig. S1 in

supporting information) and 9 (Fig. S2 in supporting information)

could be isolated with excellent purities by addition of acetonitrile.

With the acid-resistant hydrophobic tag 3 in hand, we then

turned our attention to the synthesis of A-TNF-a. Initially,
N-Fmoc-proline was introduced to 3 using DIC in the

presence of a catalytic amount of DMAP. After the comple-

tion of the reaction, an excess amount of acetonitrile was

added to the reaction mixture to precipitate hydrophobically

tagged N-Fmoc-proline (N-Fmoc-Pro-O-TAGc) 10 quanti-

tatively (Scheme S3 and Fig. S3 in supporting information).

Compound 10 was then stirred under basic conditions

consisting of 1,3-diazabicyclo[5.4.0]undec-7-ene (DBU) and

piperidine to deprotect the N-terminal Fmoc group, which

was then precipitated by the addition of acetonitrile to give a

quantitative amount of deprotected product 11 (Scheme S4 in

supporting information). Through careful examination, the

Mts group was found to be a suitable protective group for the

arginine side chain. Thus, N-Boc-Arg(Mts)-OH was introduced

to 11 to give hydrophobically tagged N-Boc-dipeptide

[N-Boc-Arg(Mts)-Pro-O-TAGc] 12 quantitatively as a precipitate

by the addition of an excess amount of acetonitrile (Scheme S5

and Fig. S3 in supporting information). It was also found that

the use of O-benzotriazole-N,N,N0,N0-tetramethyluronium

hexafluorophosphate (HBTU) and 1-hydroxy-1H-benzotriazole

(HOBt) in the presence of N,N-diisopropylethylamine (DIPEA)

was more effective after the second introduction of an amino

acid. Compound 12 was then stirred under acidic conditions to

deprotect the N-terminal Boc group, which was then precipi-

tated by the addition of acetonitrile to give a quantitative

amount of deprotected product 13 with excellent purity

(Scheme 5). Cleavage of the C-terminal benzyl ester of 12 was

not observed, while no deprotected product 13 was obtained

through N-terminal Fmoc group deprotection of hydro-

phobically tagged N-Fmoc-peptide [N-Fmoc-Arg(Mts)-Pro-

O-TAGc] 14 under basic conditions, and only 3 was recovered

as a precipitate (Scheme 6 and Fig. S4 in supporting information).

Based on these results, repeated peptide elongation with

N-Fmoc-AAs [except the last, N-Boc-Asp(tBu)-OH], deprotec-

tion in solution-phase, and separation by precipitation were

performed using HBTU and HOBt in the presence of DIPEA

to afford hydrophobically tagged N-Boc-A-TNF-a (N-Fmoc-

A-TNF-a-O-TAGc) 15 in 81% isolated yield over 25 steps

(Scheme 7). Finally, deprotection of compound 15 was

achieved under two different types of acidic conditions to give

deprotected compound, A-TNF-a, 16 in 86% isolated yield in

two steps with excellent purity (Scheme 8 and Fig. S6 in

supporting information).

In conclusion, we have successfully developed a simple

acid-resistant hydrophobic tag, which can rapidly be removed

in a single step procedure after overall peptide synthesis, to

accomplish practical solution-phase synthesis of A-TNF-a.
This strategy could effectively incorporate both Boc- and

Fmoc-chemistry and the products could readily be separated

as precipitates at each step by addition of a polar organic

solvent, which allows for elaboration of target sequences in

peptide synthesis.

Scheme 4 Evaluation of the stability of HO-TAGa–c (1–3) against

the acidic conditions used for N-terminal Boc group deprotection.

Scheme 5 N-Boc group deprotection of N-Boc-Arg(Mts)-Pro-O-

TAGc (12).

Scheme 6 Basic deprotection of N-Fmoc-Arg(Mts)-Pro-O-TAGb

(14).

Scheme 7 Synthesis of N-Boc-A-TNF-a-O-TAGc (15).

Scheme 8 Acidic deprotection of N-Boc-A-TNF-a-O-TAGc (16).
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