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Abstract: Novel 2-benzazepino[4,5-a]naphthalene derivatives
were synthesised efficiently via 1,7-electrocyclisation of nonstabi-
lised azomethine ylides derived from 1-aryl- or 1-alkenyl-naphtha-
lene-2-carbaldehyde derivatives. In some cases, surprisingly,
pyrrole derivatives were isolated. A mechanism for the formation of
the pyrrole byproduct is proposed.
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A number of seven-membered heterocyclic rings form
part of the structures of a range of biologically active nat-
ural products and medicinally important compounds. Ow-
ing to this over the last few decades several new
methodologies have been developed for the construction
of such ring systems.1,2

For many years 1,3-dipoles have been used extensively
for the construction of five-membered heterocyclic rings
via their cycloadditions with suitable dipolarophiles3,4 and
by the 1,5-electrocyclisation reactions of a,b-unsaturated
1,3-dipoles.5,6 More recently, the electrocyclisation of
diene-conjugated 1,3-dipolar intermediates has provided
a powerful general synthetic route to seven-membered
heterocyclic ring systems.7–19 The investigation of such
reactions of azomethine ylides resulted in the develop-
ment of a new approach to azepine derivatives.20

As a continuation of these studies our aim was to show the
generality of these methods as useful tools for the annela-
tion of a benzazepine ring to different naphthalene deriv-
atives in a single step. In this paper we describe the
synthesis of some hitherto unknown 2-benzazepino[4,5-
a]naphthalene derivatives. The starting material 3,4-dihy-
dro-aryl-naphthalenes 3a and 3b were prepared by the

method of De Koning21 in two steps starting from the cor-
responding a-tetralone 1 (Scheme 1).

Our initial studies applied the generation of nonstabilised
azomethine ylides16 4 by the decarboxylation method, in-
volving the condensation of N-monosubstituted a-amino
acids with 1-aryl-3,4-dihydro-naphthalene-2-carbalde-
hydes 3a and 3b. In the first set of experiments a mixture
of 3a or 3b and sarcosine was refluxed for three hours in
p-xylene, and after the workup the expected benzazepine
derivatives 6a and 6b were obtained in good yield. No re-
action occurred at lower temperature, for example, in re-
fluxing toluene, nor did the microwave irradiation
facilitate the reaction. The obtained products arise from a
1,7-electrocyclisation of the conjugated azomethine ylide
4 formed by the condensation of aldehydes 3 and sar-
cosine, to give the intermediate 5, followed by a [1,5]-
hydrogen shift, resulting in the rearomatisation of the ben-
zene ring (Scheme 2).

The same reaction was observed with N-benzylglycine 8
and the electron-withdrawing or electron-donating nature
of the substituent of the participating aromatic ring did not
affect the reaction course.

We next chose to form the azomethine ylides from the 1-
aryl-3,4-dihydronaphthalene-2-carbaldehydes 3a and 3b
and some cyclic secondary a-amino acids, such as pipe-
colinic acid (10), proline (12), 1,2,3,4-tetrahydro-3-
isoquinolinecarboxylic acid (16), and 4-thiazolidinecar-
boxylic acid (14), allowing the formation of various new
penta- and hexacyclic ring systems 9a,b, 11a,b, 13a,b,
and 15a, respectively, in a single step, in good yields
(Scheme 3).22 The intermediacy of an azomethine ylide in
this processes was proved by trapping an ylide 4

Scheme 1 Reagents and conditions: i. DMF, PBr3; ii. ArB(OH)2, Pd(OAc)2, P(o-tolyl)3, Na2CO3.
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(R = CO2Me) with N-phenylmaleimide to give the two
isomeric cycloadducts 17 and 18 (exo/endo ratio = 1:1)
which were separated by column chromatography and
characterised by NMR methods (Scheme 4).

We were also interested in determining the reactivity of
azomethine ylides derived from conjugated aldehyde 1923

in similar electrocyclisation processes. In the reaction of
19 with sarcosine under the same conditions which were
used in the previous experiments we obtained a byproduct
21a which was isolated in addition to the expected
azepine derivative 20 (ratio = 2:1 in favour of 20). In ad-
dition, the position of the double bond in the obtained
azepine derivative 20 was different to that in the previous
examples. By adding an excess of triethylamine base to

the reaction mixture the ratio of the formed products was
reversed (ratio 2:1 in favour of 21a). In the presence of
DBN (a strong base) only the formation of 21a was ob-
served. Applying N-benzylglycine 8 instead of sarcosine
in the reaction with 19 the pyrrole derivative 21b was the
sole product isolated from the reaction mixture without
the presence of extra base. The reactions of 19 with cyclic
amino acids as well as naphthalene aldehyde with sar-
cosine or N-benzylglycine proceeded again only on the
normal 1,7-electrocyclisation pathway resulting in the
formation of the expected azepine derivatives, and no pyr-
role or other byproduct formation was observed
(Scheme 5). 

Scheme 2 Reagents and conditions: i. sarcosine, xylene, reflux.
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Scheme 3 Reagents and conditions: i. xylene, reflux.
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Scheme 4 Reagents and conditions: i. N-phenylmaleimide, sarco-
sine, xylene, reflux, 61%.
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A possible mechanism for the pyrrole formation, drawn in
Scheme 6 was investigated by computational meth-
ods.24,25 After the expected 1,7-electrocyclisation of
azomethine ylide 27 followed by the 1,5-sigmatropic rear-
rangement of azepine intermediate 28 the formed 29 could
be stabilised in two possible ways. The simple migration
of one of the double bond resulting in the formation of the
more stable azepine derivative 20 via a solvent-mediated
proton-transfer reaction, driven by the increasing olefinic-
ity value25 (33.3% → 54.7%) during the rearrangement.

On the other hand, competing with the previous route, 21
may form in two possible routes (A and B). Under basic

conditions 29 could form an ammonium ylide 31, through
a very strained intermediate 30, which possibly trans-
forms to cyclopropyl derivative 32 in a Stevens [1,2] rear-
rangement (route A).26–29 Alternative, 30 could undergo a
ring-opening retro-Michael reaction, yielding a dihydro
pyrrole derivative 33 (route B). Under the applied harsh
reaction conditions the formation of 21 is facilitated by
the aromatisation of the pyrrole ring in both cases of 32
and 33 (Scheme 6).

In conclusion we have developed an easy protocol for the
formation of new fused benzazepine and pyrrole deriva-
tives from simple starting materials via  the 8p-electro-

Scheme 5 Reagents and conditions: i. CH2=CHCO2Me, Pd(OAc)2, P(o-tolyl)3, Et3N, DMA,120 °C, 3 h (82%); ii. sarcosine (R = Me) or
N-benzylglycine (R = Bn), xylene, reflux; iii. 12, xylene, reflux; iv. 10, xylene, reflux; v. DDQ, CHCl3, 60 °C, 48 h (65%).
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Scheme 6 The possible mechanisms for the formation 20 and 21. The computed Gibbs free energies (in kJ mol–1) of intermediates and tran-
sition states are indicated below the structures and the arrows, respectively.
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cyclisation process of nonstabilised azomethine ylides,
followed by a sigmatropic 1,5-hydrogen shift.
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3 H, OMe), 3.39 (d, 1 H, J = 15.0 Hz, H-7), 3.21 (d, 1 H, J = 
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126.1 (CH), 114.2 (CH), 111.6 (CH), 58.2 (CH), 57.1 (CH2), 
56.7 (CH2), 55.6 (CH3), 52.7 (CH3), 32.7 (CH2), 32.6 (CH2), 
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Compound 21b: 1H NMR (500 MHz, CDCl3): d = 7.42 (d, 1 
H, J = 8.4 Hz, H-9), 7.35 (t, 2 H, J = 8.4 Hz, Ph-3¢ and 5¢H), 
7.29 (t, 1 H, J = 8.4 Hz, Ph-4¢H), 7.06 (d, 2 H, J = 8.4 Hz, Ph-
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