Determination of Kinetic Parameters of Enantiomerization of Benzothiadiazines by DCXplorer

GIUSEPPE CANNAZZA,^{1*} MARINA M. CARROZZO,¹ UMBERTO BATTISTI,¹ DANIELA BRAGHIROLI,¹ CARLO PARENTI,¹ ALESSANDRO TROISI,² AND LUIGINO TROISI³

¹Dipartimento di Scienze Farmaceutiche, Università degli Studi di Modena e Reggio Emilia, 4100 Modena, Italy

²Department of Chemistry and Centre of Scientific Computing, University of Warwick, CV4 7AL Coventry, United Kingdom

³Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento,

73100 Lecce, Italy

ABSTRACT Benzothiadiazines differently substituted at the sulfonamidic nitrogen atom, at the stereogenic carbon atom and at the anilinic nitrogen atom have been synthesized and fully characterized. Enantioseparation of these compounds has revealed rapid on-column enantiomerization. The recently developed software DCXplorer has been successfully applied to calculate enantiomerization kinetic parameters. Enantiomerization barriers of 3-phenyl substituted benzothiadiazines, calculated in this work, have indicated a higher enantiomerization rate suggesting that the aromatic substituent exerts a strong effect on the enantiomerization process. Methyl substitution on N² position led to higher free energy barriers of enantiomerization, suggesting negative influence of methyl in the N² position on enantiomerization kinetics. However, methylation on N⁴ position increases the enantiomerization rates significantly. The results obtained have been employed to postulate an enantiomerization mechanism for chiral benzothiadiazine type compounds. *Chirality 22:789–797, 2010.* © 2010 Wiley-Liss, Inc.

KEY WORDS: benzothiadiazines; HPLC; enantiomerization; enantioseparation

INTRODUCTION

The U.S. Food and Drug Administration requires that "the stability protocol for enantiomeric drug substances and drug products should include a method or methods capable of assessing the stereochemical integrity of the drug substance and drug product."¹ Recently chiral benzo-thiadiazines type compounds have attracted particular attention as AMPA receptor positive allosteric modulators.^{2–9} As there is experimental evidence that indicate the stereospecific pharmacological action of benzothiadiazine type compounds, it gains important to evaluate the stereo-chemical stability of their active enantiomers.

It is possible to study the enantiomerization of chiral labile compounds by different techniques depending on their interconversion free energy barriers. Among the most commonly used methods, classical chromatographic off-column techniques consisting of an examination of batchwise racemization kinetics of a single enantiomer after enantioselective separation.

If enantiomerization takes place in the same time-scale of the chromatographic separation process, a characteristic plateau appears between the two peaks of the interconverting enantiomers.^{10–13} From the resulting peak shapes obtained by enantioselective dynamic HPLC (DHPLC), it is possible to extract the necessary information to calculate racemization kinetic parameters by several methods such as the theoretical plate model, stochastic model, con-© 2010 Wiley-Liss, Inc.

tinuous flow model, peak deconvolution method, approximation function, and the unified equation. $^{14-19}$

DHPLC is a very attractive technique, because it requires only minute amounts of the racemic or enantiomer-enriched mixture.

Recently, Trapp et al. have developed the software program DCXplorer that permits the calculation of reaction rate constants of enantiomerization employing the unified chromatography equation.^{19–28}

As we have demonstrated that some chiral 3,4dihydro-1,2,4-benzothiadiazine 1,1-dioxide type compounds undergo rapid enantiomerization during enantioseparation in reverse phase conditions,^{29,30} DCXplorer has been applied to calculate enantiomerization rate constants of synthesized benzothiadiazines 1-12 here (Fig. 1). Different substituents were placed in the thiadiazine ring to understand the influence of these substituents on enantiomerization activation barrier.

The data obtained by dynamic HPLC were used to gain further insight in understanding the enantiomerization

^{*}Correspondence to: Giuseppe Cannazza, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 4100 Modena, Italy. E-mail: giuseppe.cannazza@unimore.it Received for publication 1 July 2009; Accepted 5 February 2010

DOI: 10.1002/chir.20838 Published online 30 March 2010 in Wiley Online Library (wileyonlinelibrary.com).

Fig. 1. Compounds investigated.

mechanism of chiral 3,4-dihydro-1,2,4-benzothiadiazine 1,1dioxide type compounds.

EXPERIMENTAL Instrumentation

The chromatographic apparatus consisted of a Jasco Pu-2080 Plus pump, a Rheodyne 7725 manual injector equipped with a 20 μ l sample loop and a Jasco UV-2075 Plus detector. Chromatograms were recorded with Jasco J-700 program. Column temperature regulation was achieved with a Jasco CO-2067 column oven.

The column used was Chiralcel OD-RH [cellulose tris(3,5-dimethylphenylcarbamate); 150 mm \times 4.6 mm ID; 5 µm] purchased from Daicel. Melting points were determined with an electrothermal apparatus and are uncorrected. The ¹H and the ¹³C NMR spectra were recorded *Chirality* DOI 10.1002/chir

on a Bruker Avance 400 apparatus (400.13 and 100.62 MHz, for ¹H and ¹³C, respectively) with CDCl₃ and DMSO as solvents and TMS as internal standard ($\delta = 7.24$ for ¹H spectra; $\delta = 77.0$ for ¹³C spectra). Chemical shifts (δ) are in part per million and coupling constant (*J*) in hertz. Multiplicities are abbreviated as follows: s, singlet; d, doublet; dd, double doublet; t, triplet; m, multiplet.

The IR spectra were recorded with a Digilab Scimitar Series FTS 2000 FT-IR spectrophotometer. GC-MS analyses were performed with an Agilent Technologies 6850 series II gas chromatograph (with a 5% phenyl-polymethylsiloxane capillary column, 30 m, 0.25 mm ID), and a 5973 Network mass selective detector operating at 70 eV. The electrospray ionization (HR-ESI-MS) experiments were carried out in a hybrid QqTOF mass spectrometer (PE SCIEX-QSTAR) equipped with an ion spray ionization source. MS (+) spectra were acquired by direct infusion (5 ml/min) of a solution containing the appropriate sample (10 pmol/ml), dissolved in a solution 0.1% acetic acid, methanol:water 50:50 at the optimum ion voltage of 4800 V.

All pH measurements were made with an Orion Research EA940 pH-meter.

Synthesis

General procedure for the synthesis of derivatives 1–12. A mixture of the appropriate 2-amino-5-chlorobenzensulfonamide (4 mmol) and a suitable aldehyde (40 mmol) in 2-propanol (40 ml) supplemented with 2 ml of ethyl acetate saturated with dry HCl was refluxed and stirred for 2 h at 50°C. After cooling, the resulting suspension was concentrated to dryness under reduced pressure. The solid residue was purified by column chromatography on silica gel (elution solvent: ethyl acetate:petroleum ether (40–60°C), 1:1 (v/v) for compounds 2–6 and 11–12; 6:4 (v/v) for compounds 7 and 10; and 7:3 (v/v) for compounds 8 and 9).

An alternative pathway was also used for the synthesis of compound **9**. A solution of (\pm) 7-chloro-3-(2-chloro-phenyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide $((\pm)$ -**3**) (1.0 mmol) in tetrahydrofuran (10 ml) was supplemented dropwise at 0°C with a solution of lithium diisopropylamide (LDA) (1.0 mmol) in tetrahydrofuran. Methyl iodide (3.0 mmol) was then added and the mixture was stirred for 1 h at room temperature. The reaction mixture was quenched with water (50 ml) and the insoluble material was extracted three times with diethyl ether (75 ml). The combined organic layers were dried over MgSO₄ and filtered. The filtrate was concentrated to dryness under reduced pressure. The solid residue was purified by column chromatography on silica gel [elution solvent: ethyl acetate:petroleum ether (40–60°C), 7:3 (v/v)] (Yield 85%).

4-(7-Chloro-1,1-dioxido-3,4-dihydro-2*H*-1,2,4-benzothiadiazin-3-yl)phenol ((\pm) -1). The title compound was synthesized as previously reported.⁴

(±)7-Chloro-3-(2-methoxyphenyl)-3,4-dihydro-2*H*-**1,2,4-benzothiadiazine 1,1-dioxide** ((±)-2). Yield 71%, mp 172–173.2°C. ¹H NMR (CDCl₃) δ = 3.85 (s, 3H), δ = 6.15 (d, 1H, *J* = 12.2 Hz), δ = 6.92 (d, 1H, *J* = 8.9 Hz), δ = 7.06 (t, 1H, *J* = 7.5 Hz), δ = 7.12 (d, 1H, J = 8.3 Hz), $\delta = 7.36$ (dd, 1H, J = 2.5 Hz, J = 8.9 Hz), $\delta = 7.43$ (t, 1H, J = 8.3 Hz), $\delta = 7.47$ (s, 1H, broad, exchange with D₂O), $\delta = 7.55$ (d, 1H, J = 2.5 Hz), $\delta = 7.71$ (d, 1H, J = 7.5 Hz), $\delta = 7.95$ (d, 1H, J = 12.2 Hz, exchange with D₂O). ¹³C NMR (CDCl₃) δ 55.7, 61.7, 111.3, 118.2, 119.8, 120.4, 122.1, 122.9, 124.5, 128.0, 130.5, 132.8, 142.9, 156.1. FTIR (KBr) 3440, 3330, 3020, 1484, 1215, 1167 cm⁻¹. GC-MS (70 eV) m/z 324(82) [M⁺], 259(20), 206 (38), 126 (95), 119 (100), 91 (50). HRMS-ESI: calcd. for C₁₄H₁₄Cl N₂O₃S [M+H]⁺ 325.0415; found: 325.0412.

(±)7-Chloro-3-(2-chlorophenyl)-3,4-dihydro-2*H*-1,2, 4-benzothiadiazine 1,1-dioxide ((±)-3). Yield 76%, mp 211.2–212.3°C. ¹H NMR (CDCl₃) δ = 6.18 (s, 1H), δ = 6.95 (d, 1H, *J* = 8.9 Hz), δ = 7.40 (dd, 1H, *J* = 2.2 Hz, *J* = 8.9 Hz), δ = 7.47–7.59 (m, 4H), δ = 7.68 (s, 1H), δ = 7.87–7.89 (m, 1H), δ = 8.16 (s, 1H, broad). ¹³C NMR (CDCl₃) δ 64.8, 118.4, 120.4, 122.4, 122.9, 127.6, 129.1, 129.5, 130.9, 132.3, 133.0, 133.9, 142.7. FTIR (KBr) 3369, 3201, 3320, 2925, 2828, 1607, 1485, 1318, 1155 cm⁻¹. GC-MS (70 eV) *m*/*z* 328 (50) [M⁺] 247 (55), 207 (100), 126 (75). HRMS-ESI: calcd. for C₁₃H₁₁Cl₂ N₂O₂S [M+H]⁺ 328.9920; found: 328.9922.

(±)7-Chloro-3-(4-chlorophenyl)-3,4-dihydro-2*H*-1,2, 4-benzothiadiazine 1,1-dioxide ((±)-4). Yield 64%, mp 227.3–228.5°C. ¹H NMR (CDCl₃) δ = 5.82 (s, 1H), δ = 6.93 (d, 1H, *J* = 8.9 Hz), δ = 7.38 (d, 1H, *J* = 8.9 Hz), δ = 7.53–7.55 (m, 3H), δ = 7.62 (s, 1H), δ = 7.69 (d, 2H, *J* = 8.2 Hz), δ = 8.1 (s, 1H, broad, exchange with D₂O). ¹³C NMR (CDCl₃) δ 67.5, 118.4, 120.2, 122.3, 122.8, 128.5, 129.4, 132.9, 133.8, 135.8, 142.6. FTIR (KBr) 3387, 3252, 3020, 2924, 2854, 1606, 1487, 1325, 1159 cm⁻¹. GC-MS (70 eV) *m/z* 328 (40) [M⁺] 281 (27), 247 (25), 207 (100), 126 (42). HRMS-ESI: calcd. for C₁₃H₁₁Cl₂ N₂O₂S [M+H]⁺ 328.9920; found: 328.9921.

(±)7-Chloro-3-(3-chlorophenyl)-3,4-dihydro-2*H*-1,2, 4-benzothiadiazine 1,1-dioxide ((±)-5). Yield 72%, mp 201.6–202.8°C. ¹H NMR (CDCl₃) δ = 5.83 (s, 1Hz), δ = 6.94 (d, 1H, *J* = 8.9 Hz), δ = 7.39 (dd, 1H, *J* = 2.5 Hz, *J* = 8.9 Hz), δ = 7.50–7.65 (m, 5Hz), δ = 7.78 (s, 1H, broad, exchange with D₂O), δ = 8.10 (s, 1H, broad, exchange with D₂O). ¹³C NMR (CDCl₃) δ 67.5, 118.4, 120.3, 122.3, 122.9, 126.4, 127.4, 129.1, 130.4, 132.9, 133.1, 139.1, 142.6. FTIR (KBr) 3381, 3210, 3064, 2924, 2869, 1605, 1498, 1318, 1162 cm⁻¹. GC-MS (70 eV) *m*/*z* 328 (95) [M⁺] 247 (49), 142 (52), 126 (100). HRMS-ESI: calcd. for C₁₃H₁₁Cl₂N₂O₂S [M+H]⁺ 328.9920; found: 328.9922.

(±)7-Chloro-3-[4-(trifluoromethyl)phenyl]-3,4-dihydro-2*H*-1,2,4-benzothiadiazine 1,1-dioxide ((±)-6). Yield 83%, mp 205.3–206.8°C. ¹H NMR (CDCl₃) δ = 5.93 (s, 1Hz), δ = 6.94 (d, 1H, *J* = 8.9 Hz), δ = 7.39 (dd, 1H, *J* = 2.5 Hz, *J* = 8.9 Hz), δ = 7.56 (d, 1H, *J* = 2.5 Hz), δ = 7.68 (s, 1H, broad, exchange with D₂O), δ = 7.90 (d, 2H, *J* = 8.5 Hz), δ = 8.20 (s, 1H, broad, exchange with D₂O), δ = 8.85 (d, 2H, *J* = 8.5 Hz). ¹³C NMR (CDCl₃) δ 67.6, 73.8, 118.4, 120.3, 122.4, 122.8, 125.3, 125.4, 128.5, 132.9, 141.2, 142.6. FTIR (KBr) 3390, 3216, 3050, 2950, 2854, 1606, 1491, 1326, 1160 cm⁻¹. GC-MS (70 eV) *m/z*

Fig. 2. General synthesis procedure for compounds 1-12.

362 (100) $[M^+]$ 281 (75), 173 (25), 142 (30), 126 (80). HRMS-ESI: calcd. for $C_{14}H_{11}$ $ClF_3N_2O_2S$ $[M+H]^+$ 363.0183; found: 363.0181.

Chirality DOI 10.1002/chir

	(±)- 1	(±)- 2	(±)- 3	(±)- 4	(±)- 5	(±) -6	(±)- 7	(±)- 8	(±)- 9	(±)-10	(±) -11	(±)- 12
k_1	2.38	5.75	10.26	8.94	9.07	7.07	12.58	10.57	11.6	$10.47^{\rm a}$	1.69	2.84
k_2	3.52	5.75	14.20	11.64	12.84	9.88	21.01	11.38	13.23	11.10^{a}	2.34	3.76
α	1.48	1.00	1.38	1.30	1.41	1.39	1.67	1.07	1.14	1.06^{a}	1.77	1.77

TABLE 1. Chromatographic enantioseparation of racemic benzothiadiazine derivatives 1–12

Column: Chiralcel OD-RH; mobile phase: water:acetonitrile 50:50 (v/v); $T = 25^{\circ}$ C; flow: 0.5 ml/min. ^aAnalysis temperature 4°C.

(±)7-Chloro-3-(4-isopropylphenyl)-3,4-dihydro-2*H*-**1,2,4-benzothiadiazine 1,1-dioxide** ((±)-7). Yield 68%, mp 204–205.6°C. ¹H NMR (CDCl₃) δ = 1.22 (d, 6H, *J* = 6.9 Hz), δ = 2.92 (septet, 1H, *J* = 6.9 Hz), δ = 5.74 (d, 1H, *J* = 10.9 Hz), δ = 6.93 (d, 1H, *J* = 9.0 Hz), δ = 7.33– 7.38 (m, 3H), δ = 7.54–7.59 (m, 4H), δ = 7.99 (d, 1H, *J* = 10.9 Hz). ¹³C NMR (CDCl₃) δ 23.8, 33.3, 68.1, 118.3, 119.9, 122.1, 122.8, 126.4, 127.5, 132.8, 134.4, 142.7, 149.6. FTIR (KBr) 3393, 3228, 3051, 2957, 1608, 1496, 1320, 1150 cm⁻¹. GC-MS (70 eV) *m*/*z* 336 (100) [M⁺],255 (40), 147 (41), 127 (95). HRMS-ESI: calcd. for C₁₆H₁₈Cl N₂O₂S [M+H]⁺ 337.0779; found: 337.0777.

(±)7-Chloro-2-methyl-3-phenyl-3,4-dihydro-2*H*-1,2, 4-benzothiadiazine 1,1-dioxide ((±)-8).³¹ Yield 80%, mp 208–210°C ¹H NMR (DMSO-*d*₆) δ = 2.30 (s, 3H), δ = 6.29 (s, 1H), δ = 7.13 (d, 1H, *J* = 9.0 Hz), δ = 7.46 (m, 3H), δ = 7.57(m, 4H), δ = 7.77(s, 1H). FTIR (KBr) 3378, 3276, 3053, 2952, 1605, 1318,1156 cm⁻¹.

HRMS-ESI: calcd. for $C_{14}H_{14}CIN_2O_2S$ [M+H]⁺ 309.0466; found: 309.0466.

(±)7-Chloro-3-(2-chlorophenyl)-2-methyl-3,4-dihydro-2*H*-1,2,4-benzothiadiazine 1,1-dioxide ((±)-9). Yield 91%, mp 179.8–180.9°C. ¹H NMR (CDCl₃) δ = 2.34 (s, 3H), δ = 6.61 (s, 1H), δ = 7.10 (d, 1H, *J* = 9.0 Hz), δ = 7.47 (dd, 1H, *J* = 2.4 Hz, *J* = 9.0 Hz), δ = 7.51– 7.54 (m, 2H), δ = 7.58–7.62 (m, 2H), δ = 7.78–7.81 (m, 2H). ¹³C NMR (CDCl₃) δ 29.1, 68.3, 118.8, 119.2, 121.1, 124.0, 127.1, 129.7, 130.2, 131.2, 131.6, 133.3, 133.4, 142.1. FTIR (KBr) 3379, 3067, 2999, 2933, 1605, 1487, 1320, 1152 cm⁻¹. GC-MS (70 eV) *m/z* 342 (9) [M⁺], 249 (100), 231 (21), 214(62), 177 (24), 152 (27). HRMS-ESI: calcd. for C₁₄H₁₃Cl₂N₂O₂S [M+H]⁺ 343.0076; found: 343.0075.

(±)7-Chloro-3-(2-chlorophenyl)-4-methyl-3,4-dihydro-2*H*-1,2,4-benzothiadiazine 1,1-dioxide ((±)-10). Yield 97%, mp 189.3–190.5°C. ¹H NMR (DMSO- d_6) $\delta = 2.76$ (s, 3H), $\delta = 6.11$ (s, 1H), $\delta = 7.08$ (d, 1H, J = 9.0Hz), $\delta = 7.37-7.45$ (m, 3H), $\delta = 7.54-7.63$ (m, 3H), $\delta =$ 8.70 (s, 1H, broad, exchange with D₂O). ¹³C NMR (CDCl₃) δ 36.1, 71.4, 116.8, 120.4, 122.7, 124.5, 127.3, 129.0, 129.8, 130.4, 132.5, 133.3, 133.6, 143.5. FTIR (KBr) 3232, 3060, 2923, 2854, 1598, 1486, 1319, 1161 cm⁻¹. GC-MS (70 eV) *m*/*z* 342 (28) [M⁺], 203 (45), 140 (100), 111(18). HRMS-ESI: calcd. for C₁₄H₁₃Cl₂N₂O₂S [M+H]⁺ 343.0076; found: 343.0074.

(±)7-Chloro-3-pyridin-4-yl-3,4-dihydro-2*H*-1,2,4benzothiadiazine 1,1-dioxide ((±)-11). Yield 97%, mp 206.2–207.9°C. ¹H NMR (CDCl₃) δ = 6.21 (d, 1H, *J* = 10.6 Hz), δ = 7.09 (d, 1H, *J* = 9.0 Hz), δ = 7.44 (dd, 1H, *J Chirality* DOI 10.1002/chir = 2.4 Hz, J = 9.0 Hz), δ = 7.56 (d, 1H, J = 2.4 Hz), δ = 8.21 (d, 3H, J = 6.1 Hz), δ = 8.63 (d, 2H, J = 10.6 Hz). ¹³C NMR (CDCl₃) δ 66.2, 118.7, 120.7, 122.4, 122.7, 125.2, 133.3, 142.2, 142.9, 154.9. FTIR (KBr) 3267, 3047, 2828, 1602, 1486, 1324, 1174 cm⁻¹. GC-MS (70 eV) *m/z* 293 (80) [M⁺] 189 (75), 125 (100), 105 (46). HRMS-ESI: calcd. for C₁₂H₁₁ClN₃O₂S [M+H]⁺ 295.0262; found: 296.0261.

(±)7-Chloro-3-pyridin-2-yl-3,4-dihydro-2*H*-1,2,4benzothiadiazine 1,1-dioxide ((±)-12). Yield 98%, mp 179.6–180.8°C. ¹H NMR (CDCl₃) δ = 6.08 (d, 1H, *J* = 10.3 Hz), δ = 7.12 (d, 1H, *J* = 8.9 Hz), δ = 7.42 (dd, 1H, *J* = 2.4 Hz, *J* = 8.9 Hz), δ = 7.50 (s, 1H, broad, exchange with D₂O), δ = 7.54 (d, 1H, *J* = 2.4 Hz), δ = 7.70 (dd, 1H, *J* = 5.7 Hz, *J* = 7.1 Hz), δ = 7.91 (d, 1H, *J* = 8.0 Hz), δ = 8.20 (t, 1H, *J* = 8.0 Hz), δ = 8.47 (d, 1H, *J* = 10.3 Hz), δ = 8.75 (d, 1H, *J* = 5.7 Hz). ¹³C NMR (CDCl₃) δ 67.2, 118.8, 120.4, 122.2, 122.7, 123.1, 125.2, 133.1, 140.6, 142.1, 146.5, 153.8. FTIR (KBr) 3212, 3051, 2990, 2918, 2830, 1612, 1506, 1475, 1458, 1331, 1160 cm⁻¹. GC-MS (70 eV) *m*/*z* 295 (15) [M⁺] 230 (18), 215 (100), 203 (14), 126 (18), 79 (22). HRMS-ESI: calcd. for C₁₂H₁₁ClN₃O₂S [M+H]⁺ 296.0262; found: 296.0260.

Enantioselecive dynamic HPLC

Separation of enantiomers of (\pm) -**1**- (\pm) -**12** were carried out isocratically at different temperatures (4–40°C) on Chiralcel OD-RH column. The mobile phase consisted of water:acetonitrile 50:50 (v/v). The compounds were dissolved in acetonitrile (for compounds **1–10**) or ethanol (for compounds **11** and **12**) and subsequently diluted 1:100 (v/v) with mobile phase to a final concentration of 10 µg/ml. The injection volume was 20 µl. The detector was set at 254 nm.

The enantiomerization kinetic parameters of benzothiadiazine derivatives **1–12** have been investigated by dynamic chromatography experiments (DHPLC) by using the DCXplorer software developed by Trapp.¹⁹ The program employs the unified chromatography equation to directly evaluate elution profiles in a graphical user interface.^{19–28} Chromatographic row data in ASCII have been opened with the DCxplorer software and the elution profiles have been evaluated by zooming in on the area of the interconverting peaks. All chromatographic parameters have been directly determined by integration and have been used to calculate reaction rate constants.^{19–28}

Evaluation of Activation Parameters ΔG^{*} , ΔH^{*} , and ΔS^{*}

The Gibbs free activation energy $\Delta G^{\#}(T)$ has been calculated from the kinetic rate constants by fitting the data to the Eyring equation:

Fig. 3. Enantioresolution of (±)-4. Column: Chiralcel OD-RH (15 \times 0.46 I.D., 5 µm); mobile phase: water:acetonitrile 50:50 (v/v); temperature: (a) 15°C, (b) 25°C.

$$\Delta G^{\#}(T) = -\text{RT} \ln \left(\frac{kh}{\kappa k_{\text{B}}T}\right) \tag{1}$$

where *k* is the kinetic rate constant, $k_{\rm B}$ the Boltzmann constant ($k_{\rm B} = 1,380,662 \times 10^{-23}$ J K⁻¹), *h* Planck's constant ($h = 6,626,176 \times 10^{-34}$ J s), *R* the universal gas constant (R = 831,441 J K mol⁻¹), κ the transmission coefficient ($\kappa = 0,5$ for the reversible microscopic interconversion), and *T* the temperature (K).

As the experiments on compounds 1–12 were performed at different temperatures (4–40°C), it was possible to evaluate the enantiomerization activation enthalpy $\Delta H^{\#}$ from the slope and the enantiomerization activation entropy $\Delta S^{\#}$ from the intercept of the Eyring plot $[\ln(k_1/T \text{ versus } T^{-1})]$.

RESULTS AND DISCUSSION Chemistry

The synthesis of compounds **1–12** was achieved by closure of the appropriate 2-amino-5-chlorobenzensulfonamide and suitable aldehyde in the presence of hydrochloric acid as the catalyst (Fig. 2). An alternative pathway was used for the synthesis of compound **9**. In previous work, sele-

Т	ABLE 2. Rate c	onstants o	f enantiomeriza	tion of racemic	benzothiadiazi	ne derivatives 1	-12 determine	ed in DHP	LC by DC	Xplorer at (different tempe	eratures
	(土)-1	(土)-2	(≑)- 3	(±)- 4	⊆ -(∓)	9 -(∓)	∠ -(∓)	8 -(∓)	6 -(∓)	(±)- 1 0	(±)- 11	(土)- 12
4°C	$3.06 \pm 0.10 \ imes 10^{-4}$	53	$\begin{array}{c} 0.85 \pm 0.34 \ imes 10^{-4} \end{array}$	$\begin{array}{c} 0.52 \pm 0.09 \ imes 10^{-4} \end{array}$	$\begin{array}{c} 0.38 \pm 0.45 \ imes 10^{-4} \end{array}$	$\begin{array}{c} 0.44 \pm 0.81 \ imes 10^{-4} \end{array}$	$\begin{array}{c} 0.36 \pm 0.20 \ imes 10^{-4} \end{array}$	q	q	53	${1.15 \pm 0.10 \ imes 10^{-4}}$	$2.33 \pm 1.32 \times 10^{-4}$
15°C	$\begin{array}{c} 9.35 \pm 0.21 \ imes 10^{-4} \end{array}$	ъ	$\begin{array}{c} 1.37 \pm 0.08 \ imes 10^{-4} \end{array}$	$1.45 \pm 0.05 imes 10^{-4}$	$1.11 \pm 0.04 \ imes 10^{-4}$	${1.14 \pm 0.02 \ imes 10^{-4}}$	${1.76} \pm 0.08 \ imes 10^{-4}$	q	q	ы	$3.38 \pm 0.09 imes 10^{-4}$	$5.17 \pm 0.37 imes 10^{-4}$
25°C	$\begin{array}{c} 22.23 \pm 0.05 \\ \times \ 10^{-4} \end{array}$	в	$3.62 \pm 0.01 \ imes 10^{-4}$	$3.70 \pm 0.01 \ imes 10^{-4}$	$2.89 \pm 0.06 imes 10^{-4}$	${3.24 \pm 0.02 \ imes 10^{-4}}$	$2.51 \pm 0.09 \ imes 10^{-4}$	q	q	в	$7.25 \pm 0.21 \ imes 10^{-4}$	$7.20 \pm 0.18 \ imes 10^{-4}$
37°C	æ	R	$10.02 \pm 0.15 imes 10^{-4} imes 10^{-4}$	$\begin{array}{c} 9.80 \pm 0.10 \ imes 10^{-4} \end{array} ightarrow 10^{-4}$	$8.36 \pm 0.08 imes 10^{-4}$	$8.76 \pm 0.14 imes 10^{-4} imes 10^{-4}$	$9.25 \pm 0.17 imes 10^{-4}$	ą	q	R	$17.3 \pm 0.04 imes 10^{-4}$	a
Column	Chiralcel OD-RH.	elnent [,] water	racetonitrile 50.50	(v / v)								

^bAny enantiomerization occurred during enantioseparation time-scale.

^aEnantiomerization too fast to be calculated.

TAB	LE 3. Free ent	ergy barri	ier of enantiom	erization of race	nic benzothiadi	iazine detivative	es 1-12 determi	ined in DI	IPLC by	DCXplore	at different ten	nperatures
	(土)-1	(\pm) -2	(±)- 3	(\pm) -4	2 -(∓)	9 -(∓)	と-(干)	8 -(=)	6 -(∓)	(±)- 1 0	(土)-11	(土)- 12
4°C	85.97 ± 0.03	а	89.19 ± 0.97	90.16 ± 0.04	90.87 ± 0.28	90.55 ± 0.43	90.98 ± 0.13	q	q	а	88.32 ± 0.20	86.84 ± 1.78
$15^{\circ}C$	86.76 ± 0.05	а	91.44 ± 0.15	91.28 ± 0.09	91.93 ± 0.08	91.86 ± 0.03	90.82 ± 0.08	q	q	а	89.23 ± 0.07	88.20 ± 0.18
$25^{\circ}C$	87.64 ± 0.06	a	92.22 ± 0.01	92.14 ± 0.01	92.76 ± 0.05	92.47 ± 0.01	93.12 ± 0.09	q	q	а	90.45 ± 0.07	90.08 ± 0.05
37°C	а	а	92.23 ± 0.04	92.25 ± 0.01	92.70 ± 0.02	92.58 ± 0.04	92.44 ± 0.05	q	q	а	90.82 ± 0.06	n
Column: ^a Enantio ^b Any eni	Chiralcel OD-RH; merization too fast utiomerization occ	eluent: wa to be calcu curred duri	terracetonitrile 50:5 ulated. ng enantioseparatic	0 (v/v). on time-scale.								

TABLE 4. Activation parameters of benzothiadiazines investigated

	(主)-1	(±)- 2	(十)-3	(土)-4	2 -(∓)	9-(干)	と-(干)	8 -(=)	6 -(=)	(±)- 1 0	(±)- 11	(±)- 12
$\Delta H^{\#}$ (kJ/mol)	11.61 ± 1.63	а	7.07 ± 3.02	10.73 ± 0.77	11.74 ± 1.05	11.27 ± 1.01	11.47 ± 4.36	ą	ą	а	9.23 ± 1.02	0.07 ± 3.29
ΔS^{*} (J/molK)	7.01 ± 0.47	53	6.16 ± 0.88	-7.27 ± 0.22	-7.64 ± 0.31	-7.48 ± 0.29	-7.53 ± 1.28	q	q	53	-6.62 ± 0.30	-3.88 ± 0.95
r	0.9975	53	0.9803	0.9990	0.9983	0.9984	0.9724	q	q	53	0.9979	0.9714
$s_{\rm y}$	0.09	5	0.25	0.06	0.09	0.09	0.37	q	q	ta	0.09	0.18
" donotoo the oo	toriotion acofficiant	t and a to	the societion damin	otion of the lineou	and of the D	breis a slota						

r denotes the correlation coefficient and s_{y} is the residual deviation of the linear regression of the Eyring plots. ^aEnantiomerization too fast to be calculated. ^bAny enantiomerization occurred during enantiomeriztion time-scale.

CANNAZZA ET AL

Chirality DOI 10.1002/chir

Fig. 4. Enantiomerization mechanism postulated.

ctive alkylation of heterocyclic ring at N² of benzothiadiazine ring was obtained with potassium carbonate as base in refluxing acetonitrile.^{3,5} (\pm)7-Chloro-3-(2-chlorophenyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide ((\pm)-**3**) was selectively alkylated with LDA and methyl iodide to give compound **9**. Selective methylation occurred in the 2position of (\pm)7-Chloro-3-(2-chlorophenyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide ((\pm)-**3**). This second method proved to be an effective alternative to the potassium carbonate procedure and may be adopted for further synthesis of 2-alkylbenzothiadiazines.

The obtained benzothiadiazines were fully characterized by ¹H and ¹³C NMR spectroscopy, FTIR, and GC-MS.

Chiral Separation

Among different commercial available chiral stationary phases (CSP), cellulose 3,5-dimethylphenylcarbamate (Chiracel OD-RH) was chosen, because it was previously employed successfully for the enantioseparation of chiral benzothiadiazine-type compounds.^{4,29,30,32–34}

The enantioseparation of chiral benzothiadiazines 1-12 was performed in reversed phase conditions using a Chiracel OD-RH column with mobile phases of water:acetonitrile at different percentages. Among the mobile phases used, water: acetonitrile 50:50 (v/v) was chosen, as it gave the higher enantioresolution with acceptable analysis times (Table 1). Although good enantioseparation at 25°C was obtained for all compounds with the exception of 2and 10, baseline enantiomeric resolution was achieved only for 8 and 9 (Table 1). A pronounced plateau was observed between the peaks corresponding to the two enantiomers, indicating that rapid enantiomerization of compounds 1, 3-7, and 10-12 occurred in water:acetonitrile during enantioseparation at 25°C (Fig. 3). Conversely, any plateau observed in the chromatograms corresponding to enantioseparation of compounds 8 and 9 at temperatures between 4 and 37°C using water:acetonitrile 50:50 (v/v) as mobile phase indicated that any racemization occurs in the experimental conditions used (Table 1). At 25° C, enantioseparation was achieved for compounds 2 and 10 using mobile phases with different percentages of acetonitrile. Compound 10 was enantioseparated at 4°C with a separation factor of 1.06. Compound 2 has shown a partial enantioseparation only at -10° C. We were unable to ascribe the poor enantioseparation of 2 and 10 to a fast on-column enantiomerization or to weak stereoselectivity of the CSP.

Enantiomerization

In this work DCXplorer was employed to calculate kinetic enantiomerization parameters of compounds 1, 3–7, and 10–12 at temperatures between 4 and 37°C.

The results obtained are reported in Table 2. The enantiomerization rate constants obtained were used to calculate free energy barriers of enantiomerization ($\Delta G^{\#}$) applying the Eyring equation and the results are reported in Table 3. The activation enthalpies $\Delta H^{\#}$ and activation entropies $\Delta S^{\#}$ of the tested compounds were obtained by plotting $\ln(k_1/T)$ as a function of T^{-1} according to the Eyring equation and are summarized in Table 4.

It was possible to calculate enantiomerization rate constants of compound 1 at 4, 15, and 25°C but not at 37°C because of peak coalescence. As shown in Table 3, the free energy barrier of 1 was lower than those of the other benzothiadiazines tested except for 10 indicating that the *o*-hydroxyphenyl substituent at C³ position dramatically increases the enantiomerization rate.

The enantiomerization rate constants of compound **5** are slightly lower than those of compounds **3** and **4**, indicating that *m*-chloro phenyl substituent possesses an inhibitory effect on enantiomerization rate in comparison with *o*- and *p*-chloro phenyl substituents.

Compounds **6** and **7**, bearing respectively a *p*-trifluoromethylphenyl and a *p*-isopropylphenyl substituent at C^3 position, show quite similar enantiomerization rate constants indicating that the two substituents have similar influences on enantiomerization kinetics. With the aim of evaluating the influence of methyl substituents on N²- and N⁴ positions, enantiomerization rate constants were calculated for compounds **8**, **9**, and **10**.

No enantiomerization occurred for compounds 8 and 9 between 4 and 37°C, indicating that N²-methyl substituent dramatically increases free energy barrier of enantiomerization.

As the rapid thermal enantiomerization of compound **10** results in peak coalescence between 15 and 37°C, it was not possible to calculate enantiomerization rate constants.

Plateau formation was observed only at 4°C, indicating that rapid enantiomerization takes place during chromatographic separation. This data suggests that a methyl substituent at N⁴ considerably increases enantiomerization rates. Compound **11** has a free energy barrier of enantiomerization slightly greater than for compound **12** indicating that a 2-pyridine substituent at C³ increases enantiomerization rate.

Fig. 5. Pathway example of ring opening.

Previous studies regarding enantiomerization of 3-alkyl substituted benzothiadiazines suggested an enantiomerization barrier of about 94 kJ/mol under similar experimental conditions.^{32–35} Enantiomerization barriers of 3-phenyl substituted benzothiadiazines, calculated in the present work, indicated a higher enantiomerization rates suggesting that aromatic substituents exert a strong effect on the enantiomerization process. The methyl substitution on N² position (compounds **8** and **9**) led to higher free energy barriers of enantiomerization, suggesting a negative influence of this methyl group on enantiomerization kinetics. However, methylation on N⁴ significantly increases enantiomerization rates.

The resultant free energy barriers of enantiomerization of compounds with aromatic substituents at C³ are consistent with an interconversion mechanism that involves an imine intermediate with the double bond between C^3 and N^2 (Fig. 4). Because aromatic imines are more stable than aliphatic imines, aromatic substituents at the stereogenic carbon atom decrease free energy barriers of enantiomerization. The formation of imine intermediates can occur via several pathways and one example is given in (Fig. 5). As the observed negative entropy of enantiomerization suggests, a bimolecular reaction mechanism can occur, probably protonation of N^4 , followed by deprotonation of N^2 and simultaneous imine bond formation between N² and C^3 (Fig. 5). This pathway has been proposed to account for the observed enantiomerization behavior of the benzothiadiazine-type compounds tested. The electron donating effect of a methyl substituent at N^4 (10) accelerates enantiomerization presumably as a consequence of a more favorable protonation of nitrogen. However, the methyl substituent at N^2 in **8** and **9** accounts for their higher energy enantiomerization barriers, because the replacement of the acidic proton suppresses ring opening. This enantiomerization mechanism proposed is supported by previous studies. Mollica et al. suggested that hydrolysis of benzothiadiazine compounds (e.g. hydrochlorthiazide) can occur via an imine intermediate that undergoes attack by water to form a carbinolamine, which subsequently decomposes.³⁶ Moreover, we have recently disclosed the rapid enantiomerization and reversible hydrolysis in acidic conditions of (\pm) -7-chloro-3-methyl-3,4-dihydro-2H-1,2,4benzothiadiazine 1,1-dioxide (IDRA21) to 2-amino-5-chlorobenzensulfonamide and acetaldehyde by a mechanism similar to that observed for hydrolysis of imine compounds.³⁰ Ghelardoni et al. have reported the action of KBH₄ on the 3-alkyl or 3-aryl substituted 3,4-dihydro-1,2,4benzothiadiazines 1,1-dioxyde in water-ethanol as solvent.37 Compounds with the structure of 2-aminobenzen-Chirality DOI 10.1002/chir

sulfon-N-alkylamides or 2-aminobenzensulfon-N-benzylamides were obtained, suggesting the formation and subsequently reduction of an imine intermediate.³⁷

Therefore, all the observed effect of substituents at N^2 , C^3 , and N^4 on enantiomerization rates, the negative enantiomerization entropy, and other evidence cited supported the postulated enantiomerization mechanism.

ACKNOWLEDGMENTS

The authors thank Dr. L. Costa for the technical help he gave for synthesis and enantiomerization experiments. This research was partly financially supported by MIUR (Ministero dell'Istruzione, dell'Università e della Ricerca, Italy).

LITERATURE CITED

- Announcement. FDA's policy statement for the development of new stereoisomeric drugs. Chirality 1992;4:338–340.
- Lestage P, Danober L, Lockart B, Roger A, Lebrun C, Robin JL, Desos P, Cordi A. S18986, Positive allosteric modulator of AMPA receptors as a novel cognition enhancer in rodents. Res Pract Alzheimer's Dis 2002;6:253–259.
- Philips D, Sonnenberg J, Arai AC, Vaswani R, Krutzik PO, Kleisli T, Kessler M, Granger R, Lynch G, Chamberline AR. 5'-Alkyl-benzothiadiazides: a new subgroup of AMPA receptor modulators with improved affinity. Bioorg Med Chem 2002;10:1229–1248.
- Braghiroli D, Puia G, Cannazza G, Tait A, Parenti C, Losi G, Baraldi M. Synthesis of 3,4-Dihydro-2*H*-1,2,4-benzothiadiazine 1,1-dioxide derivatives as potential allosteric modulators of AMPA/Kainate receptors. J Med Chem 2002;45:2355–2357.
- 5. Pirotte B, Podona T, Diouf O, de Tullio P, Lebrun P, Dupont L, Somers F, Delarge J, Morain P, Lestage P, Lepagnol J, Spedding M. 4H-1,2,4-pyridothiadiazine 1,1-dioxides and 2,3-dihydro-4H-1,2,4-pyridothiadiazine 1,1-dioxides chemically related to diazixide and cyclothiazide as powerful positive allosteric modulators of (*R/S*)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid receptors: design, synthesis, pharmacology, and structure-activity relationships. J Med Chem 1998;41:2946–2959.
- Graindorge E, Francotte P, Boverie S, de Tullio P, Pirotte B. New trends in the development of positive allosteric modulators. Curr Med Chem 2004;4:95–103.
- Hashimoto K, Okamura N, Shimizu E, Iyo M. Glutamate hypothesis of schizophrenia and approach for possible therapeutic drugs. Curr Med Chem 2004;4:147–154.
- Black MD. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology 2005;179:154–163.
- Francotte P, de Tullio P, Goffin E, Dintilhac G, Graindgorge E, Fraikin P, Lestage P, Danober L, Thomas JY, Caignard DH, Pirotte B. Design, synthesis and pharmacology of novel 7-substituted 3,4-dihydro-2*H*-1,2,4-benzothiadiazine 1,1-dioxide as positive allosteric modulators of AMPA receptors. J Med Chem 2007;50:3153–3157.
- 10. Bürkle W, Karfunkel H, Schurig V. Dynamic phenomena during enantiomer resolution by complexation gas chromatography. A kinetic study of enantiomerization. J Chromatogr 1984;288:1–14.

- Eliel EL, Wilen SH. Stereochemistry of organic compounds. New York: Wiley; 1994, p 424–426.
- Reist M, Testa B, Carrupt P-A, Jung M, Schurig V. Racemization, enantiomerization, diastereomerization, and epimerization: their meaning and pharmacological significance. Chirality 1995;7:396–400.
- Jung M, Schurig V. Determination of enantiomerization barriers by computer simulation of interconversion profiles: enantiomerization of diaziridines during chiral inclusion gas chromatography. J Am Chem Soc 1992;114:529–534.
- Veciana J, Crespo MI. Dynamic HPLC: a method for determination rate constants, energy barriers, and equilibration constants of molecular dynamic processes. Angew Chem Int Ed Engl 1991;30:74–77.
- Trapp O, Schoetz G, Schurig V. Determination of enantiomerization barriers by dynamic and stopped-flow chromatographic methods. Chirality 2001;13:403–414.
- Krupcik J, Oswald P, Majek P, Sandra P, Armstrong DW. Determination of the interconversion energy barrier of enantiomers by separation methods. J Chromatogr A 2003;1000:779–800.
- Wolf C. Stereolabile chiral compounds: analysis by dynamic chromatography and stopped-flow methods. Chem Soc Rev 2005;34:595– 608.
- D'Acquarica I, Gasparrini F, Pierini M, Villani C, Zappia G. Dynamic HPLC on chiral stationary phases: a powerful tool for the investigation of stereosimulation processes. J Sep Sci 2006;29:1508–1516.
- Trapp O. A unified equation for fast and precise access to rate constants of first order reactions in dynamic and on-column reaction chromatography. Anal Chem 2006;78:189–198.
- Trapp O. DCXplorer is available from the author as executable programs, running under Microsoft Windows 2000, XP and Vista.
- Trapp O. Fast and precise access to enantiomerization rate constants in dynamic chromatography. Chirality 2006;18:489–497.
- Trapp O. The unified equation for the evaluation of first order reactions in dynamic electrophoresis. Electrophoresis 2006;27:534– 541.
- Trapp O. A dynamic molecular probe to investigate catalytic effects and Joule heating in enantioselective micellar electrokinetic chromatography. Electrophoresis 2007;28:691–696.
- Trapp O, Schurig V. Stereointegrity of Troger's base: gas chromatographic determination of the enantiomerization barrier. J Am Chem Soc 2000;122:1424–1430.

- Trapp O, Weber SK, Bauch S, Hofstadt W. High-throughput screening of catalysts by combining reactions and analysis. Angew Chem Int Ed Engl 2007;46:7307–7310.
- Trapp O. Gas-chromatographic high-throughput screening techniques in catalysis (review article). J Chromatogr A 2008;1184:160–190.
- Trapp O, Schurig V. ChromWin-a computer program for the determination of enantiomerization barriers in dynamic chromatography. Comput Chem 2001;25:187–195.
- Trapp O. A novel software tool for high-throughput measurements of interconversion barriers: DCXplorer. J Chromatogr B 2008;875:42–47.
- Cannazza G, Carrozzo MM, Braghiroli D, Parenti C. Enantiomerization of chiral 2,3,3a,4-tetrahydro-1*H*-pyrrolo[2,1-c][1,2,4]benzothiadiazine 5,5-dioxide by stopped-flow multidimensional HPLC. J Chromatogr B 2008;875:192–199.
- 30. Cannazza G, Carrozzo MM, Braghiroli D, Parenti C. Enantiomerization and hydrolysis of (±)-7-chloro-3-methyl-3,4-dihydro-2*H*-1,2,4-benzothiadiazine 1,1-dioxide by stopped-flow multidimensional high-performance liquid chromatography. J Chromatogr A 2008;1212:41–47.
- Ghelardoni M, Pestellini V. Hydrogenolysis of 3,4-dihydro-1,2,4-benothiadiazine-1,1-dioxide. Ann Chim 1972;62:373–384.
- 32. Cannazza G, Braghiroli D, Baraldi M, Parenti C. Chiral resolution of the enantiomers of 7-chloro-3-methyl-3,4-dihydro-2*H*-1,2,4-benzothiadiazine 1,1-dioxide using high performance liquid chromatography on cellulose-based chiral stationary phases. J Pharm Biomed Anal 2000; 23:117–125.
- Cannazza G, Braghiroli D, Tait A, Baraldi M, Parenti C, Lindner W. Studies of enantiomerization of chiral 3,4-dihydro-1,2,4-benzothiadiazine 1,1-dioxide type compounds. Chirality 2001;13:94–101.
- 34. Cannazza G, Braghiroli D, Iuliani P, Parenti C. Energy barrier determination of enantiomerization of chiral 3,4-dihydro-1,2,4-benzothiadiazine 1,1-dioxide type compounds by enantioselective stopped-flow HPLC. Tetrahedron: Asymmetry 2006;17:3158–3162.
- Carrozzo MM, Cannazza G, Battisti U, Braghiroli D, Parenti C. Simultaneously determination of enantiomerization and hydrolysis kinetic parameters of chiral *N*-alkylbenzothiadiazine derivatives. Chirality 2009;DOI: 10.1002/chir. 20751.
- Mollica A, Rehm CR, Smith JB, Govan HK. Hydrolysis of benzothaidiazines, J Pharm Sci 1971;60:1380–1384.
- Ghelardoni M, Pestellini V, Russo F. Idrogenolisi di 3,4-diidro-1,2,4benzotiadiazine-1,1-diossido, Annali di chimica 1969;59:590–693.