Synthesis of Fluorine-Containing Aryl(halo)boranes from Potassium Aryl(fluoro)borates

V. V. Bardin^{a,*}, S. A. Prikhod'ko^b, M. M. Shmakov^b, A. Yu. Shabalin^b, and N. Yu. Adonin^b

^a N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia

^b Federal Research Center "G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences," Novosibirsk, 630090 Russia

*e-mail: bardin@nioch.nsc.ru

Received June 13, 2019; revised June 13, 2019; accepted June 20, 2019

Abstract—Fluorine-containing aryldihalogenoboranes have been obtained by the reaction of boron and aluminum chlorides and bromides with potassium aryltrifluoroborates $K[ArBF_3]$ under mild conditions. In a similar way, bis(pentafluorophenyl)halogenoboranes have been synthesized by the reaction with $K[(C_6F_5)_2BF_2]$. The reaction of $K[C_6F_5BF_3]$ with AlBr₃ affords a mixture of $C_6F_5BF_2$ and $C_6F_5BCl_2$ due to fast conversion of AlBr₃ to AlBrCl₂. The inductive and resonance parameters of BCl₂ and BBr₂ groups were calculated.

Keywords: aryldihaloboranes, aryltrifluoroborates, boron halides, aluminum halides

DOI: 10.1134/S1070363220010089

Polyfluorinated aryl(halogeno)boranes are known since 1963, when $C_6F_5BF_2$ and $C_6F_5BCl_2$ have been first prepared [1, 2]. Till the end of 90-s, the main methods of their synthesis consisted in the replacement of the C-metal bond by the C-B bond, or in transformation of the BR₂ fragment into BX₂ (X = F, Cl, Br). In 2000, it was proposed to prepare aryldifluoroboranes by the reaction of potassium aryltrifluoroborates with fluorine-containing Lewis acids (BF₃, AsF₅) in an inert solvent (CH₂Cl₂, fluorochlorocarbons). The method is of general character and can be expanded to alkyl-, alkenyl- and alkynyldifluoroboranes. More general picture of the studies in this field is presented in review [3].

Until recently, generation of aryldifluoroboranes in solution using non-fluorinated fluoride ion acceptors was represented only by papers [4, 5]. Aryldifluoroboranes were obtained by the reaction of chlorotrimethylsilane with salts K[ArBF₃] (Ar = C₆H₅, 2-C₆FH₄, 2,6-C₆Cl₂H₃, 1-naphthyl) in acetonitrile or THF and they exist in equilibrium with the solvates ArBF₂L [L = NCMe, O(CH₂CH₂)₂] (¹¹B NMR) [4]. According to [5], C₆H₅BF₂ was formed from K[C₆H₅BF₃], 18-crown-6 (cat.) and SiCl₄ in CH₂Cl₂, whereas in MeCN or MeCN–THF the solvate C₆H₅BCl₂L was obtained. In neither case the yields of the products were reported.

The solutions of nonsolvated aryldifluoroboranes $C_6F_nH_{5-n}BF_2$ were obtained by us by defluorination of aryltrifluoroborates $K[C_6F_nH_{5-n}BF_3]$ in the two-phase system [bmim][Al₂Cl₇]-hexane [6]. Despite of the fact that chloroaluminate was chosen as the acceptor of fluoride ion, no formation of chloro-containing arylboranes was observed. It is noteworthy, that we succeeded not only in the synthesis of compounds with the phenyl and fluorophenyl group, but also with electron withdrawing polyfluorinated aryl groups 4-EtOC₆F₄ and C₆F₅, because such aryldifluoroboranes are much more strong Lewis acids than their hydrocarbon analogues. The obtained solutions of arylboranes showed the properties of good homogeneous catalysts of alkylation of phenols with olefins [6]. These results open up perspectives for their use as mild acidic catalysts for selective transformations of polyfunctional compounds.

To develop this approach to aryl(halogeno)boranes we investigated defluorination of a series of easily accessible potassium aryl(fluoro)borates with some Lewis acids. As fluoride ion acceptors, boron and aluminum chlorides and bromides were used, as well as silicon chlorides.

Earlier, we have described defluorination of $K[C_6H_5BF_3]$ and fluorinated potassium phenyltrifluoroborates with boron fluoride in CH_2Cl_2 [7]. Boron chloride

Scheme 2.

is more strong Lewis acid (pF-9.40, 9.60) than BF₃ (pF-8.21) [8, 9]. Upon the action of BCl₃ in CH₂Cl₂ at room temperature, potassium 3-fluorophenyltrifluoroborate **1** is converted to 3-fluorophenyldichloroboranes **2** with the absence of notable amounts of fluoroboranes 3-FC₆H₄BF₂ and 3-FC₆H₄BFCl. (Table 1, run 1). Potassium 4-fluorophenyltrifluoroborate **3** reacts similarly resulting in 4-fluorophenyldichloroborane **4** (Table 1, run 2). The yields of fluorophenylboranes in both cases exceed 80% (Scheme 1).

Potassium pentafluorophenyltrifluoroborate **5** reacts with small excess of BCl₃ in CH_2Cl_2 at room temperature to give a mixture of pentafluorophenylfluorophenyldifluoroborane **6**, pentafluorophenylfluorochloroborane **7** and, mainly, pentafluorophenyldichloroborane **8** (Table 1, run 3). In a large excess of BCl₃, fluoroboranes **6** and **7** practically were not formed (Table 1, run 4) (Scheme 2).

Under similar conditions, potassium bis(pentafluorophenyl)difluoroborate 9 gives a small amount of bis(pentafluorophenyl)fluoroborane 10, while the main product is bis(pentafluorophenyl)chloroborane **11** (1 : 14) (Scheme 3).

Using large excess of BCl₃ and increasing the duration of the reaction to 15 h, we tried to obtain 2-heptafluoronaphthyldichloroborane **12** from potassium heptafluoronaphthyltrifluoroborate **13**. Indeed, arylborane **12** was obtained in 50% yield but it contained notable amount of 2-heptafluoronaphthylfluorochloroborane **14** (2.6 : 1). Both arylhalogenoboranes are very sensitive to moisture and easily form 2-heptafluoronaphthylboronic acid **15** even with short-term exposure on wet air. The latter was characterized by ¹¹B and ¹⁹F NMR spectra and the data of elemental analysis (Scheme 4).

Treatment of borate **5** with two-fold excess of boron bromide in CH_2Cl_2 gave equimolar amounts of difluoroborane **6** and pentafluorophenyldibromoborane **16** (Table 1, run 5) (Scheme 5).

Aluminum halides are more strong fluorine acceptors than the corresponding boron halides. For example, the fluoride ion affinity (pF⁻) of compounds

BARDIN et al.

Run no.	Ar (mmol)	MX ₃ (mmol)	Solvent (V mI)	Time h	Yield, mmol ^a		
			Solvent (V, IIIL)	Time, n	ArBF ₂	ArBFX	ArBX ₂
1	$3-FC_{6}H_{4}(1.7)$	BCl ₃ (2.8)	$CH_2Cl_2(7)$	2			1.4
2	$4-FC_{6}H_{4}(3.2)$	BCl ₃ (4.4)	$CH_2Cl_2(11)$	2			2.8
3	$C_6F_5(4.70)$	BCl ₃ (5.5)	$CH_2Cl_2(20)$	2	0.48	0.54	3.24
4	$C_6F_5(0.9)$	BCl ₃ (1.5)	$CH_2Cl_2(4)$	3			0.7
5	$C_6F_5(1.15)$	BBr ₃ (2.3)	$CH_2Cl_2(5)$	2	0.44		0.56
6	$C_6F_5(0.78)$	AlCl ₃ (1.4)	$CH_2Cl_2(5)$	4	0.41	0.09	0.21
7	$C_6F_5(1.2)$	AlCl ₃ (1.8)	Hexane (2)	4			0.3
8	$C_6F_5(1.2)$	AlCl ₃ (1.8)	Hexane (2)	24	0.1	0.09	0.4
9	$C_6F_5(0.89)$	AlCl ₃ (1.0)	Hexane (3) ^b	7	0.30	0.09	0.19
10	$C_6F_5(0.89)$	AlCl ₃ (1.0)	Hexane (3) ^b	14	0.67		
11	$3-FC_{6}H_{4}(1.24)$	AlBr ₃ (1.36)	Hexane (3)	3	0.78	0.08	0.26
12	$3-FC_6H_4(1.24)$	AlBr ₃ (1.36)	Hexane (3) ^b	9	0.78	0.08	0.26
13	$3-FC_{6}H_{4}(0.67)$	AlBr ₃ (1.70)	Hexane (3)	4			0.50
14	$4\text{-FC}_{6}\text{H}_{4}(0.56)$	AlBr ₃ (0.70)	Hexane (2)	4	0.19	0.04	0.22
15	$4\text{-FC}_{6}\text{H}_{4}(0.41)$	AlBr ₃ (0.76)	Hexane (2)	4	0.04	0.02	0.29
16	$C_6F_5(0.83)$	AlBr ₃ (0.86)	Hexane (3)	3	0.67		
17	$C_6F_5(0.83)$	AlBr ₃ (0.86)	Hexane (3)	24	0.67		
18	$C_6F_5(0.83)$	AlBr ₃ (0.86)	Hexane (3) ^b	6	0.67		
19	$C_6F_5(0.77)$	AlBr ₃ (1.51)	Hexane (3)	3	0.19	0.03	0.28
20	$C_6F_5(0.77)$	AlBr ₃ (1.51)	Hexane (3)	24	0.31	0.06	0.05
21	$C_6F_5(1.2)$	AlBr ₃ (1.2)	CH_2Cl_2 (10)	2	1.1		
22	$C_6F_5(1.00)$	AlBr ₃ (1.8)	$CH_2Cl_2(10)$	1	0.84		0.14°
23	C_6F_5 (1.00)	AlBr ₃ (3.4)	CH_2Cl_2 (20)	24			1.0°
24	$4-C_5NF_4(0.57)$	BCl ₃ (0.95)	$CH_2Cl_2(2)$	5	0.03	0.07	0.40
25	$4-C_5NF_4(0.93)$	AlCl ₃ (2.1)	$CH_2Cl_2(3)$	5	0.05	0.05	0.80

Table 1. Parameters of the reaction of K[ArBF₃] with boron and aluminum halogenides at 22°C

^a From ¹⁹F NMR.

^bAt 60–65°C.

 $^{\circ}C_{6}F_{5}BCl_{2}.$

AlCl₃, AlCl₂F, AlClF₂, and AlF₃ is 11.46, 11.50, 11.47, and 11.50, respectively [10]. Indeed, upon stirring the suspension of borate **5** and AlCl₃ in CH₂Cl₂ (22°C, 4 h) we obtained the solution of C₆F₅BF₂, C₆F₅BFCl, and C₆F₅BCl₂ in the ratio 4 : 1 : 2 (Table 1, run 6). The reaction in hexane proceeds slower. After 4 h, only dichloroborane **8** was presented in the solution (yield 25%) (Table 1, run 7). Further stirring of the reaction suspension for 24 h leads to the increase of the yield of **8** to 33% and the formation of diffuoroborane **6** (8%) and small amount of C_6F_5BClF (Table 1, run 8). Reflux in hexane for 7 h increases the conversion of borate **5** to 65% and is accompanied by conversion of dichloroborane **8** to fluorochloroborane **7** and diffuoroborane **6** (Table 1,

run 9). After 14 h reflux, the latter becomes the only product of the reaction (yield 75%) (Table 1, run 10) (Scheme 6). Apparently, the lower reaction rate in hexane as compared to that in dichloromethane is due to low solubility of the substrate and the reagent in hydrocarbons.

Similar changes in the rate of defluorination were observed in the reaction of $K[(C_6F_5)_2BF_2]$ with AlCl₃ in dichloromethane and hexane. In CH₂Cl₂ solution at 22°C, this substrate was almost completely converted into the equimolar mixture of boranes **10** and **11** in 4 h. In hexane, the conversion of borate **9** was 40% after 5 h, and the main product was chloroborane **11**. Prolonged stirring (55 h) of heterogeneous mixture increased the conversion of **9** to 76%, but, a small amount of $[(C_6F_5)_2B]_2O$ **17** was formed because of the contact with wet air (Scheme 7).

Although the affinity of aluminum bromide to fluoride ion is unknown, it can be assumed to be higher than that of aluminum chloride. The reaction of borate **1** with AlBr₃ (1 equiv.) in hexane at room temperature affords 3-fluorophenyldifluoroborane **18** (major product), 3-fluorophenylfluoroboromoborane **19** and 3-fluorophenyldibromoborane **20** (Table 1, run 11). Heating at 60°C for 9 h did not change the composition and the ratio of the products (Table 1, run 12). With excess of

Scheme 8.

$$K[3-FC_{6}H_{4}BF_{3}] + nAlBr_{3} \xrightarrow{hexane} 3-FC_{6}H_{4}BF_{2} + 3-FC_{6}H_{4}BFBr + 3-FC_{6}H_{4}BBr_{2}$$

$$1 \qquad 19 \qquad 20$$

$$n = 1 (3 h): \qquad 3 \qquad : \qquad 0.3 \qquad : \qquad 1$$

$$n = 2.5 (4 h): \qquad 0 \qquad : \qquad 0 \qquad : \qquad 1$$

Scheme 9.

 $K[4-FC_{6}H_{4}BF_{3}] + nAlBr_{3} \xrightarrow{\text{hexane}} 4-FC_{6}H_{4}BF_{2} + 4-FC_{6}H_{4}BFBr + 4-FC_{6}H_{4}BBr_{2}$ $3 \qquad n = 1: \qquad 1 \qquad 23 \qquad 22$ $n = 1: \qquad 1 \qquad 0.2 \qquad : \qquad 1$ $n = 1.9: \qquad 0.1 \qquad : \qquad 0.1 \qquad : \qquad 1$

AlBr₃, only dibromoborane **20** is formed (Table 1, run 13) (Scheme 8).

Isomeric borate **3** reacts with AlBr₃ in hexane in a similar way. With small excess of aluminum bromide, approximately equal amounts of 4-fluorophenyldifluoroborane **21** and 4-fluorophenyldibromoborane **22** are formed besides a small amount of 4-fluorophenylfluorobromoborane **23** (Table 1, run 14). With two-fold excess of AlBr₃, the major product is dibromoborane **22**, while the total amount of fluorine-containing boranes **21** and **23** does not exceed 15–17% (Table, run 15) (Scheme 9).

The reaction of borate **5** with AlBr₃ (1 equiv.) at 22°C in hexane affords $C_6F_5BF_2$ in 80% yield (Table 1, run 16). The increase of duration of the reaction from 4 to 20 h, or heating at 60-65°C for 6 h did not lead to arylbromoboranes (Table 1, runs 17, 18). This means that the formed AlBr₂F does not exchange the fluorine atoms in **6** by bromine atoms under these conditions. Upon the action of two equiv. of AlBr₃ on borate **5**, di-

haloboranes **6** and **16** were obtained in the ratio 1 : 1.5 and total yield of 60% after 3 h. Also, a small amount of pentafluorophenylbromofluoroborane **24** and unidentified compounds were found (Table 1, run 19). More protracted stirring led to partial transformation of aryldibromoborane **16** to the corresponding aryldifluoroborane (Table 1, run 20) (Scheme 10).

The reaction of **5** with AlBr₃ (1 equiv.) in CH₂Cl₂ proceeds faster than in hexane and after 2 h difluoroborane **6** is formed in almost quantitative yield (Table 1, run 21). However, when 1.8 equiv. of AlBr₃ was used, along with difluoroborane **6**, dichloroborane **8** was unexpectedly formed besides difluoroborane **6**. With larger excess of AlBr₃ it was the only product of the reaction (Table 1, runs 22, 23). We assumed that aluminum bromide is converted to the chloride or bromochloride, which are responsible for the formation of compound **8**. Special experiment has shown that dissolution of AlBr₃ (1 equiv.) in CH₂Cl₂ (22°C) gives rise to the formation of dark so-

Scheme 10.

lution, from which gray precipitate is sedimented. After 4 h, 2 equiv. of CH_2ClBr is formed and the composition is not changed during the next 20 h. Stoichiometrically, it corresponds to substitution of two bromine atoms in AlBr₃ by chlorine atoms and formation of AlBrCl₂, although we did not investigate the nature of the precipitate in detail (Scheme 11).

Since tetrafluoro-4-pyridyldifluoroborane **25** has the highest affinity to fluoride ion among aryldifluoroboranes (pF^- 9.08 [11]), defluorination of potassium tetrafluoro-4-pyridyltrifluoroborate **26** requires strong acceptor of fluoride ion. Thus, this borate did not react with boron fluoride (pF^- 7.88 [11], 8.21 [9]), but under the action of

AsF₅ (pF⁻ 10.59 [10]) in CH₂Cl₂ tetrafluoro-4-pyridyldifluoroborane **25** was formed [12]. This compound along with tetrafluoro-4-pyridylfluorochloroborane **27** is formed from borate **26** by the action of boron chloride (pF⁻ 9.60 [9]) or aluminum chlorides (11.46 [10]), but the main product is tetrafluoro-4-pyridyldichloroborane **28**, whose yields exceed 70% (Table 1, runs 24, 25) (Scheme 12). In this connection, the inertness of arylborate **26** to boron bromide (pF⁻ 10.24 [9]) and aluminum bromide is surprising. For example, it does not react with BBr₃ in CH₂Cl₂ (22°C, 20 h), or with excess of AlBr₃ in hexane (22°C, 96 h) or with excess of BBr₃ in boiling 1,2-dichloroethane (¹¹B and ¹⁹F NMR). The reasons for that are unclear.

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 90 No. 1 2020

Although silicon chlorides Me₃SiCl and SiCl₄ successfully defluorinate hydrocarbon potassium aryltrifluoroborates [4, 5], they do not react with K[C₆F₅BF₃] at reflux in CHCl₃ (weakly coordinating solvent) during 2–3 h. This is consistent with notable difference of the pF⁻ values of aryldifluoroboranes C₆H₅BF₂ and C₆F₅BF₂ ($\Delta pF^- = 1.74$ [11]).

The reaction of potassium aryltrifluoroborates with boron and aluminum halides can be represented by Scheme 13. Although the final product here is $ArBX_2$, the ratio of boranes ArBF₂: ArBFX: ArBX₂ depends on the stoichiometry of the reagents, solubility or volatility of MF_nX_{3-n} (n = 0-2), which can be removed from the reaction mixture as precipitate or gas, and possible interconversion of these boranes. It is known that in the mixture of phenyldihaloboranes $C_6H_5BF_2 + C_6H_5BX_2 = 2 C_6H_5BFX$ (X = Cl, Br) the halogen atoms are exchanged and equilibrium is established [13], but there are no data on the behavior of their polyfluorinated analogues. Another determining factor is heterogeneity of the reaction mixture. Defluorination was carried out in weakly coordinating solvents (hexane, dichloromethane, 1,2-dichloroethane), in which borates K[ArBF₃] are insoluble and, most probably, the reaction occurs on the surface of the solid compound.

The products of defluorination, aryldihaloboranes, are very sensitive to air moisture, especially in pure form, and are easily converted to the mixtures of arylboronic acids and their anhydrides when exposed to air. This strongly complicates the determination of their elemental composition by classical methods. The structure of the earlier unknown aryldihaloboranes was established using multinuclear NMR spectroscopy, by comparing with the spectra of known aryldifluoroboranes (Table 2). In the ¹¹B NMR spectrum of the solution obtained from borate 5 and AlCl₃ (Scheme 6), apart from the signals of the known boranes $C_6F_5BF_2$ and $C_6F_5BCl_2$ (Table 2), a doublet with the spin-spin coupling constant CCB ¹J(B,F) 85 Hz appears at 38.2 ppm that was assigned to the boron atom in pentafluorophenylfluorochloroborane 7. The ¹⁹F NMR spectrum of this solution contain the signal of the BFCl group at -28.4 (q, ${}^{1}J_{BF} = 82$ Hz) and the signals of pentafluorophenyl group at -129.2 (m, 2F, F^{2,6}), -144.9 (t. t, 1F, F⁴, ³*J*(F⁴, F^{3,5}) 20.1 Hz, ⁴*J*(F⁴, F^{2,6}) 6.6 Hz) and -161.1 $(m, 2F, F^{3,5})$ ppm of the corresponding intensity. The ¹¹B NMR spectrum of tetrafluoro-4-pyridylflurochloroborane 27 contains a doublet at 37.3 ppm (${}^{1}J_{BF} = 84 \text{ Hz}$) belonging to the boron atom in the BFCl group, whereas in the ¹⁹F NMR spectrum the signal of the fluorine atom of this group appears at -23.6 ppm. The multiplets at -91.5 (2F, $F^{2,6}$) and -132.2 ppm (2F, $F^{3,5}$) correspond to the fluorine atoms of the tetrafluoropyridyl ring. The solution of pentafluorophenyldihaloboranes in hexane (Scheme 10)

	Solvent	$\delta_{\rm B},$ ppm	δ _F , ppm				
Borane			BF	2,6-F	4-F ^a	3,5-F	
C ₆ F ₅ BF ₂	CH ₂ Cl ₂	22.4	-74.0	-128.6	-143.6	-161.1	
$C_{6}F_{5}BF_{2}[17]$	CH ₂ Cl ₂	22.8	-74.4	-129.0	-143.8	-161.3	
$C_6F_5BF_2[6]$	Hexane	23.2	-73.0	-128.7	-144.5	-161.7	
C ₆ F ₅ BCl ₂	CH_2Cl_2	53.0		-128.8	-145.3	-161.2	
C ₆ F ₅ BCl ₂	Hexane	54.0		-128.6	-146.1	-161.2	
$C_6F_5BCl_2[21]$	C_6D_6	52.3		-129.9	-146.6	-162.4	
$C_6F_5BCl_2[2]$	CCl ₄			-128.3	-145.3	-160.7	
$4-C_5NF_4BCl_2$	CH ₂ Cl ₂	53.9		-90.7		-132.9	
$C_6F_5BBr_2$	CH ₂ Cl ₂	53.6		-128.8	-146.5	-161.4	
$C_6F_5BBr_2$	Hexane	54.8		-129.0	-147.2	-161.0	
$C_6F_5BBr_2[21]$	C_6D_6	53.3		-130.3	-147.4	-161.9	
$(C_6F_5)_2BF$	CH ₂ Cl ₂	43.3		-130.0	-144.7	-161.0	
$(C_6F_5)_2BF$ [23]	CDCl ₃	43.2	-26	-133	-146	-161	
$(C_6F_5)_2BCl$	CH ₂ Cl ₂	58.3		-129.0	-144.2	-161.0	
$(C_6F_5)_2BCl[2]$	_			-129.5	-145.4	-161.3	
$(C_6F_5)_2BC1[22]$	Toluene- <i>d</i> ₈	58.8		-129.6	-144.0	-161.4	
$(C_6F_5)_2BBr [24]$	CDCl ₃	61.2					
$(C_6F_5)_2BBr$	Hexane	61.6		-128.9	-145.3	-161.1	
$3-FC_{6}H_{4}BF_{2}[17]$	CH ₂ Cl ₂	24.5	-91.1		-113.5		
3-FC ₆ H ₄ BCl ₂	CH_2Cl_2	54.9			-113.8b		
3-FC ₆ H ₄ BCl ₂ [25]	_	54.3					
$3-FC_6H_4BBr_2$	Hexane	57.6				-112.6°	
$4-FC_6H_4BF_2$	CH ₂ Cl ₂	26.2	-92		-105.7		
$4-FC_{6}H_{4}BF_{2}[17]$	CH ₂ Cl ₂	24.7	-92.7		-104.0		
$4-FC_6H_4BF_2[6]$	Hexane	24.5	-93.6		-104.1		
4-FC ₆ H ₄ BCl ₂	CH ₂ Cl ₂	54.1			-102.2 ^d		
4-FC ₆ H ₄ BCl ₂ [25]	_	54.9					
$4-FC_6H_4BBr_2$	Hexane	56.7			-101.2e		

Table 2. ¹¹B and ¹⁹F NMR spectroscopy data for aryl(halogeno)boranes

a ${}^{3}J_{\rm F}4_{\rm F}3,5 = 19-20$ Hz.

^a $^{3}J_{F^{3}F^{5},5} = 1720$ Hz. ^b d. d. $^{3}J_{F^{3}H^{2}} = 9.0$, $^{3}J_{F^{3}H^{4}} = 9.0$, $^{4}J_{F^{3}H^{5}} = 5.4$ Hz. ^c t. t, $^{3}J_{F^{3}H^{3,5}} = 8.1$, $^{4}J_{F^{4}H^{2,6}} = 6.6$ Hz. ^d d. d. $^{3}J_{F^{3}H^{2}} = 8.4$, $^{3}J_{F^{3}H^{4}} = 8.4$, $^{4}J_{F^{3}H^{5}} = 5.2$ Hz.

^e t. t, ${}^{3}J_{F^{3}H^{3,5}} = 7.9$, ${}^{4}J_{F^{4}H^{2,6}} = 6.4$ Hz.

contains the ¹¹B NMR signals of boranes 6, 16 (Table 2) and pentafluorophenylbromofluoroborane 24 at δ_B = 39.4 ppm (d, ${}^{1}J_{BF}$ = 98 Hz). In the ${}^{19}F$ NMR spectrum the signals of pentafluorophenyl group appear at -128.0 $(m, 2F, F^{2,6}), -144.8 (t. t. t, 1F, F^4, {}^{3}J_{F^4F^{3,5}} = 19.8 \text{ Hz}, {}^{4}J_{F^4F^{2,6}} =$ 7.0 Hz, ${}^{6}J_{F^{4}BF} = 2.8$ Hz) and -161.0 (m, 2F, F^{3,5}) ppm, but a weak and broad resonance of the BBrF group cannot be seen. In both cases, the signals of the boron atoms and of the pentafluorophenyl group appear between the corresponding signals of boranes $C_6F_5BF_2$ and $C_6F_5BX_2$ (X = Cl, Br) (Table 2). The structure of 4-fluorophenylbromofluoroborane 23 (Scheme 9) follows from the presence of a doublet (${}^{1}J_{BF} = 100 \text{ Hz}$) at 42.1 ppm (¹¹B) and the ¹⁹F NMR signal at -37.0 ppm $(q \ 1 : 1 : 1 : 1, 1F, BFBr, {}^{1}J_{BF} = 100 \text{ Hz})$ and -101.6 ppm (t. t. d, 1F, F⁴, ${}^{3}J_{F^{4}H^{3},5} = 8.6$ Hz, ${}^{4}J_{F^{4}H^{2},6} =$ 5.8 Hz, ${}^{6}J_{F^{4}BF}$ = 3.2 Hz) ppm. The ¹H NMR spectrum, apart from signals of boranes 21 and 22, contains the signals of borane 23: doublet of doublets at 7.96 ppm $({}^{3}J_{\mathrm{H}3,5\mathrm{F}4} = 6.0 \text{ Hz}, {}^{3}J_{\mathrm{H}3,5\mathrm{H}2} = 8.1 \text{ Hz})$ and multiplet at 7.01 ppm of equal intensity. In the ¹¹B NMR spectrum of 3-fluorophenylbromofluoroborane **19** a doublet $({}^{1}J_{BF} =$ 100 Hz) appears at 42.4 ppm, and in the ¹⁹F NMR spectrum, the signal of the BFBr group at -34.1 ppm (q 1 : 1 : 1 : 1, 1F, BFBr, ${}^{1}J_{BF} \sim 95$ Hz), whereas fluorine atom F³ resonates close to the corresponding signals of boranes **20** and **18** ($\delta_F = -112.7$ ppm, 1F, t. d, ${}^{3}J_{F^{3}H^{2},4} =$ 9.3 Hz, ${}^{4}J_{F^{3}H^{5}} = 5.8$ Hz). In the ¹H NMR spectrum of the reaction mixture the signal of atom H6 was identified at 7.72 ppm (d, ${}^{3}J_{H^{6}H^{5}} = 7.2$ Hz), but the signals of other hydrogen atoms in compound 19 are overlapped with those of boranes 20 and 18.

The picture can be completed by the spectral characteristics of the known boranes C_6H_5BFX . The ¹¹B NMR signal of phenylfluorochloroborane is a doublet at 41 ppm (${}^{1}J_{BF} = 80\pm10$ Hz) [14] or 40.4 ppm (${}^{1}J_{BF} = 90$ Hz) [13]. The corresponding ¹⁹F NMR signal is very broaden and appears at -51 [13]) or -49.5 ppm [14]. The doublet signal of phenylbromofluoroborane in the ¹¹B NMR spectrum is found at 42.6 ppm (${}^{1}J_{BF} = 98$ Hz), but the ¹⁹F NMR signal was too broaden to be detected neither in the spectrum of neat borane nor in the solution in methylcyclohexane. Later, this compound was characterized by the following NMR parameters: $\delta_B = 34.2$ ppm (d, ${}^{1}J_{BF} = 125$ Hz) and $\delta_F = -31.5$ ppm (br. s) [14].

The data for fluorophenyldihaloboranes $FC_6H_4BX_2$ (X = Cl, Br) allowed to calculate electronic parameters of BX₂ groups from the ¹⁹F NMR spectra using the Taft method [15]. The obtained values of inductive and resonance constants are $\sigma_I = 0.10$ and $\sigma_R^0 = 0.39$ for BCl₂ and $\sigma_I = 0.11$ and $\sigma_R^0 = 0.39$ for BBr₂. According to the literature data, the dichloroboryl group is characterized by parameters $\sigma_I = 0.04$ [16] and $\sigma_R^0 = 0.31$ [16] and 0.34 [15]. For the BBr₂ group, the values of inductive and resonance constants were not determined. For comparison, the corresponding values for substituent BF₂ are $\sigma_I = 0.15$ [17], 0.16 [18], 0.23, 0.26 [15] and $\sigma_R^0 = 0.22$, 0.28 [15], 0.30 [17]. Despite of variation in the parameter values measured by different methods, there is an evident trend of the decrease of inductive effect and simultaneous enhancement of the resonance effect of substituents BX₂ with replacement of X = F by X = Cl and Br.

In the present study, the content and the yields of $ArBX_2$ were determined from ¹⁹F NMR spectra. If only total concentration of aryldihaloboranes is required, the method described by us earlier can be used [6]. Thus, the aliquot of the $ArBX_2$ solution was added to the solution of methylpyridine in hexane of known concentration, the precipitate of the complex was filtered off and the amount of the residual base was determined by the method of GC or by titration with acid.

Therefore, we have developed a convenient method for preparation of solutions of fluorinated aryldihaloboranes and diarylhaloboranes, which can be used as homogeneous catalysts of electrophilic reactions, as well as precursors of arylboronic and arylborinic acids and their derivatives.

EXPERIMENTAL

NMR spectra were recorded on Bruker AVANCE 300 [300.13 (¹H), 282.40 MHz (¹⁹F)] and DRX 500 [160.46 MHz (¹¹B)] spectrometers. Chemical shifts referenced to Me₄Si (¹H), CCl₃F (¹⁹F, secondary standard C₆F₆, $\delta_F = -162.9$ ppm) and BF₃OEt₂ (15% in CDCl₃, ¹¹B).

Dichloromethane, chloroform, 1,2-dichloroethane and hexane were distilled over P_2O_5 . Me₃SiCl and SiCl₄ were distilled over CaH₂. Commercial AlCl₃, AlBr₃ (Acros), BCl₃ and BBr₃ were used. K[C₆F₅BF₃] [19], K[2,3,5,6-C₅NF₄BF₃] [12], K[3-FC₆H₄BF₃], K[4-FC₆H₄BF₃] [17], K[(C₆F₅)₂BF₂] [20] were synthesized by the known methods. Aryldihaloboranes were identified by the NMR spectra (Table 2). Quantitative analysis of the reaction mixtures was performed by ¹⁹F NMR spectroscopy (internal standard C₆F₆ or C₆H₅F). All operations were performed in dry argon atmosphere. **Defluorination of potassium aryltrifluoroborates** with boron chloride (bromide). To the suspension of $K[ArBF_3]$ in CH_2Cl_2 the 0.9–1.1 M. solution of BX_3 in CH_2Cl_2 was added and stirred at 22°C. The suspension was centrifuged and the solution of aryldihaloboranes separated by decantation (Table 1).

3-Fluorophenyldichloroborane (2). ¹H NMR spectrum (CH₂Cl₂), $\delta_{\rm H}$, ppm: 7.86 d (1H, H⁶, ${}^{3}J_{\rm H}{}^{6}{}_{\rm H}{}^{5}$ = 7.4 Hz), 7.72 d (1H, H², ${}^{3}J_{\rm H}{}^{2}{}_{\rm F}{}^{3}$ = 9.4 Hz), 7.41 d. d. d (1H, H⁵, ${}^{3}J_{\rm H}{}^{5}{}_{\rm H}{}^{4}$ = 7.7, ${}^{3}J_{\rm H}{}^{5}{}_{\rm H}{}^{6}$ = 7.4, ${}^{4}J_{\rm H}{}^{5}{}_{\rm F}{}^{3}$ = 5.6 Hz), 7.29 d. d. d (1H, H⁴, ${}^{3}J_{\rm H}{}^{4}{}_{\rm F}{}^{3}$ = 9.0, ${}^{3}J_{\rm H}{}^{5}{}_{\rm H}{}^{4}$ = 7.7, ${}^{4}J_{\rm H}{}^{4}{}_{\rm H}{}^{2}$ = 2.1 Hz).

4-Fluorophenyldichloroborane (4). ¹H NMR spectrum (CH₂Cl₂), $\delta_{\rm H}$, ppm: 8.10 d. d (2H, H^{2,6}, ${}^{3}J_{\rm H}{}^{3}{}_{\rm H}{}^{2}$ = 7.0, ${}^{4}J_{\rm H}{}^{3}{}_{\rm H}{}^{2}$ = 7.0 Hz), 7.09 d. d (2H, H^{3,5}, ${}^{3}J_{\rm H}{}^{3}{}_{\rm H}{}^{2}$ = 7.0, ${}^{3}J_{\rm H}{}^{3}{}_{\rm F}{}^{4}$ = 9.0 Hz).

Defluorination of K[(C_6F_5)₂BF₂] with boron chloride. The solution of (C_6F_5)₂BCl (0.85 mmol) and (C_6F_5)₂BF (0.06 mmol) in CH₂Cl₂ was obtained from the suspension of K[(C_6F_5)₂BF₂] (433 mg, 1.0 mmol) in CH₂Cl₂ (6 mL) and 1.1 M BCl₃ in CH₂Cl₂ (1.2 mL, 1.3 mmol) by stirring for 1 h at 22°C.

Defluorination of K[(C_6F_5)₂BF₂] with aluminum chloride. *a*. To the suspension of AlCl₃ (118 mg, 0.88 mmol) in CH₂Cl₂ (3 mL) K[(C_6F_5)₂BF₂] (375 mg, 0.90 mmol) was added and stirred for 4 h at 22°C. The suspension was centrifuged to obtain the solution of (C_6F_5)₂BF (0.40 mmol) and (C_6F_5)₂BCl (0.43 mmol) (¹¹B, ¹⁹F NMR).

b. The reaction was performed similarly using AlCl₃ (157 mg, 1.18 mmol), hexane (4 mL) and K[(C_6F_5)₂BF₂] (452 mg, 1.07 mmol). After 5 h the solution contained (C_6F_5)₂BF (0.02 mmol) and (C_6F_5)₂BCl (0.39 mmol). After 55 h: (C_6F_5)₂BF (0.13 mmol), (C_6F_5)₂BCl (0.56 mmol) and compound **17** (0.07 mmol) were present in the mixture (¹¹B, ¹⁹F NMR).

Defluorination of K[2-C₁₀F₇BF₃] with boron chloride. 0.95 M solution of BCl₃ in CH₂Cl₂ (2 mL, 1.9 mmol) was added to the suspension of K[2-C₁₀F₇BF₃] (152 mg, 0.42 mmol) in CH₂Cl₂ (2.5 mL) and stirred for 15 h at 22°C. After centrifugation the solution was decanted and concentrated at a reduced pressure to ~2 mL to obtain the solution containing 2-C₁₀F₇BFCl (0.08 mmol) and 2-C₁₀F₇BCl₂ (0.21 mmol) (¹¹B, ¹⁹F NMR).

2-Heptafluoronaphthyldichloroborane (12). ¹¹B NMR spectrum (CH₂Cl₂), $\delta_{\rm B}$: 53.7 ppm. ¹⁹F NMR spectrum (CH₂Cl₂), $\delta_{\rm F}$, ppm: -103.4 d. d (1F, F¹, $4J_{\rm F^1F^8}$ = 75.0, ${}^{5}J_{F^{1}F^{4}} = 18.0$ Hz), -128.8 d. m (1F, F³, ${}^{3}J_{F^{3}F^{4}} = 14.0$ Hz), -142.2 d. d. d (1F, F⁸, ${}^{4}J_{F^{1}F^{8}} = 75.0$, ${}^{3}J_{F^{7}F^{8}} = 17.0$, ${}^{5}J_{F^{5}F^{8}} = 17.0$ Hz), -146.2 d. d. d (1F, F⁵, ${}^{4}J_{F^{4}F^{5}} = 59.0$, ${}^{3}J_{F^{5}F^{6}} = 15.0$, ${}^{5}J_{F^{5}F^{8}} = 15.0$ Hz), -149.9 d. d. d (1F, F⁴, ${}^{4}J_{F^{4}F^{5}} = 59.0$, ${}^{3}J_{F^{5}F^{6}} = 18.0$, ${}^{3}J_{F^{5}F^{6}} = 18.0$ Hz), -150.3 d. d (1F, F⁶, ${}^{3}J_{F^{5}F^{6}} = 18.0$, ${}^{3}J_{F^{6}F^{7}} = 18.0$ Hz), -155.3 d. d (1F, F⁷, ${}^{3}J_{F^{6}F^{7}} = 18.0$, ${}^{3}J_{F^{7}F^{8}} = 18.0$ Hz).

2-Heptafluoronaphthylfluorochloroborane (14). ¹¹B NMR spectrum (CH₂Cl₂): δ_B 36.4 ppm. ¹⁹F NMR spectrum (CH₂Cl₂), δ_F , ppm: -102.8 d. d (1F, F¹, $4J_{F^1F^8} =$ 74.0, ${}^5J_{F^1F^4} = 20.0$ Hz), -129.1 m (1F, F³), -142.2 m (1F, F⁸), -146.5 d. d. d (1F, F⁵, $4J_{F^4F^5} = 59.0$, ${}^3J_{F^5F^6} = 19.0$, ${}^5J_{F^5F^8} = 19.0$ Hz), -150.0 d. d (1F, F⁶, $3J_{F^5F^6} = 20.0$, $3J_{F^6F^7} =$ 20.0 Hz), -150.6 d. d (1F, F⁴, $4J_{F^4F^5} = 59.0$, ${}^3J_{F^3F^4} = 19.0$, ${}^5J_{F^1F^4} = 19.0$ Hz), -156.1 d. d (1F, F⁷, ${}^3J_{F^6F^7} = 20.0$, ${}^3J_{F^7F^8} =$ 20.0 Hz).

2-Heptafluoronaphthylboronic acid (15). The obtained solution of naphthylhalogenoboranes in CH₂Cl₂ was kept in air for 2-3 h. After evaporation of solvent the residue was washed with cold diethyl ether (1 mL) Yield 80 mg (64%), white solid. ¹¹B NMR spectrum (Et₂O): δ_B 27.1 ppm. ¹⁹F NMR spectrum (Et₂O), δ_F , ppm: $-108.6 \text{ d. } \text{d} (1\text{F}, \text{F}^1, {}^4J_{\text{F}}{}^{1}_{\text{F}}8 = 69.4, {}^5J_{\text{F}}{}^{1}_{\text{F}}4 = 19.5 \text{ Hz}),$ -127.6 d. m (1F, F³, ${}^{3}J_{F^{3}F^{4}} = 18.0$ Hz), -144.7 d. d. d $(1F, F^8, {}^4J_{F^1F^8} = 69.4, {}^3J_{F^7F^8} = 16.5, {}^5J_{F^5F^8} = 16.5 \text{ Hz}),$ $-147.1 \text{ d. d. d. d} (1F, F^5, {}^4J_{F^4F^5} = 57.4, {}^3J_{F^5F^6} = 16.5, {}^5J_{F^5F^8} =$ $16.5, 4J_{F5} = 3.6 \text{ Hz}$, $-151.5 \text{ d. d. d. d. (1F, F4, 4}J_{F4} = 3.6 \text{ Hz})$ 57.4, ${}^{3}J_{F^{3}F^{4}} = 19.2$, ${}^{5}J_{F^{1}F^{4}} = 19.5$, ${}^{5}J_{F^{4}F^{6}} = 4.0$, ${}^{6}J_{F^{4}F^{8}} =$ 4.0 Hz), -155.1 d. d (1F, F⁶, ${}^{3}J_{F}{}^{5}{}_{F}{}^{6} = 16.4$, ${}^{3}J_{F}{}^{6}{}_{F}{}^{7} =$ 18.0 Hz),-158.0 d. d (1F, F⁷, ${}^{3}J_{F}{}^{6}{}_{F}{}^{7}$ = 18.0, ${}^{3}J_{F}{}^{7}{}_{F}{}^{8}$ = 16.5 Hz). Found, %: C 39.5; H 1.02; F 44.2. C₁₀H₂BF₇O₂. Calculated, %: C 40.32; H 0.68; F 44.64.

Reaction of K[2,3,5,6-C₅NF₄BF₃] with boron bromide. *a*. 1.1 M. solution of BBr₃ in CH₂Cl₂ (1.5 mL, 1.27 mmol) was added to the suspension of K[2,3,5,6-C₅NF₄BF₃] (297 mg, 1.15 mmol) in CH₂Cl₂ (6 mL) and stirred for 20 h at 22°C. No organofluorine compounds were detected in the mother liquor (¹⁹F NMR).

b. 1.1 M. solution of BBr₃ in CH₂Cl₂ (2 mL, 2.2 mmol) was added to the stirred suspension of K[2,3,5,6-C₅NF₄BF₃] (262 mg, 1.0 mmol) in dichloromethane (7 mL) and heated to distill off the solvent. The residue was refluxed for 3 h. No organofluorine compounds were detected in the mother liquor (¹⁹F NMR). The suspension was treated with 2% HCl, the precipitate dried in air to obtain K[2,3,5,6-C₅NF₄BF₃] (234 mg).

Defluorination of potassium aryltrifluoroborates with aluminum chloride (bromide). Potassium aryltri-

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 90 No. 1 2020

fluoroborate was added to the suspension of aluminum halide in the solvent and stirred at a given temperature (Table 1). The obtained mixture was centrifuged and the solution of aryldihaloboranes decanted.

3-Fluorophenyldibromoborane (20). ¹H NMR spectrum (hexane), δ , ppm: 7.98 d (1H, H⁶, ³J_{H⁶H⁵} = 7.3 Hz), 7.86 d (1H, H², ³J_{H²F³} = 8.4 Hz), 7.33 m (1H, H⁵), 7.18 d. d. d (1H, H⁴, ³J_{H²F³} = 8.4, ³J_{H⁴H⁵} = 8.4, ⁴J_{H²H⁴} = 2.7 Hz).

4-Fluorophenyldibromoborane (22). ¹H NMR spectrum (CH₂Cl₂), δ , ppm: 8.24 d. d (2H, H^{2,6}, ³*J*_{H²H³} = 8.3, ⁴*J*_{H²F³} = 6.0 Hz), 7.02 d. d (2H, H^{3,5}, ³*J*_{H²H³} = 8.3, ³*J*_{H³F⁴} = 8.3 Hz).

Reaction of K[2,3,5,6-C₅NF₄BF₃] with AlBr₃ in hexane. Hexane (3 mL) and borate 26 (125 mg, 0.5 mmol) were added to AlBr₃ (388 mg, 1.4 mmol). The obtained suspension was stirred for 96 h at 22°C. No organofluorine compounds were detected in the mother liquor (¹⁹F NMR). The precipitate was filtered, washed with CH_2Cl_2 and dried in air to give starting borate 26 (115 mg).

Reaction of AlBr₃ with dichloromethane. Dark solution of AlBr₃ (467 mg, 1.75 mmol) in CH₂Cl₂ (2.0 mL, 56 mmol) was stirred for 4 h at 22°C. Grey suspension was centrifuged. ¹H NMR spectrum of the solution contained the signals of CH₂Cl₂ (5.24 ppm) and CH₂ClBr (5.11 ppm) (100 : 18). No changes occurred in the next 20 h. The reaction mixture was poured on ice, organic phase was dried with MgSO₄ and benzene (quantitative internal standard) was added. Yield of CH₂ClBr was 3.5 mmol (¹H NMR).

Reaction of K[$C_6F_5BF_3$] with ClSiMe₃. Suspension of borate 5 (740 mg, 2.7 mmol) and ClSiMe₃ (880 mg, 8.0 mmol) in CHCl₃ (3 mL) was refluxed with stirring for 3 h. No organofluorine compounds were found in the solution (¹⁹F NMR).

Reaction of K[$C_6F_5BF_3$] with SiCl₄. Suspension of borate 5 (740 mg, 2,7 mmol) and SiCl₄ (1 mL) in CHCl₃ (3 mL) was refluxed with stirring for 2 h. No organofluorine compounds were found in the solution (¹⁹F NMR).

FUNDING

This work was supported by the Ministry of Science and High Education of Russian Federation within the State task of N.N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, and G.K. Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences. The authors are grateful to Chemical Research Center for Collective Use of Siberian Branch of Russian Academy of Sciences for spectral and analytical measurements.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- Chambers, R.D. and Chivers, T., *Proc. Chem. Soc.* (*London*), 1963, p. 208. https://doi.org/10.1039/PS9630000189
- Chambers, R.D. and Chivers, T., J. Chem. Soc., 1965, p. 3933. https://doi.org/10.1039/JR9650003933
- Adonin N.Yu. and Bardin, V.V., *Russ. Chem. Rev.*, 2010, vol. 79, p. 757. https://doi.org/10.1070/RC2010v079n09ABEH004136
- Vedejs, E., Chapman, R.W., Fields, S.C., Lin, S., and Schrimpf, M.R., *J. Org. Chem.*, 1995, vol. 60, p. 3020. https://doi.org/10.1021/jo00115a016
- Kim, B.J. and Matteson, D.S., Angew. Chem. Int. Ed., 2004, vol. 43, p. 3056. https://doi.org/10.1002/anie.200453690
- Shmakov, M.M., Prikhod'ko, S.A., Bardin, V.V., and Adonin, N.Yu., *Mendeleev Commun.*, 2018, vol. 28, p. 369. https://doi.org/10.1016/j.mencom.2018.07.009
- 7. FrohnH.-J.,Bailly,F.,andBardin,V.V.,Z.Anorg.Allg.Chem., 2002, vol. 628, p. 723. h t t p s : //doi.org/10.1002/1521-3749(200205)628:4<3C723::AID-ZAAC723>3.0.CO;2-1
- Bessac, F. and Frenking, G., *Inorg. Chem.*, 2003, vol. 42, p. 7990. https://doi.org/10.1021/ic0341410
- Grant, D.J., Dixon, D.A., Camaioni, D., Potter, R.G., and Christe, K.O., *Inorg. Chem.*, 2009, vol. 48, p. 8811. https://doi.org/10.1021/ic901092x
- Christe, K.O., Dixon, D.A., McLemore, D., Wilson, W.W., Sheehy, J.A., and Boatz, J.A., *J. Fluorine Chem.*, 2000, vol. 101, p. 151. https://doi.org/10.1016/S0022-1139(99)00151-7
- Abo-Amer, A., Frohn H.-J., Steinberg, C., and Westphal, U., *J. Fluorine Chem.*, 2006, vol. 127, p. 1311. https://doi.org/10.1016/j.jfluchem.2006.05.008
- Abo-Amer, A., Adonin, N.Yu., Bardin, V.V., Fritzen, P., Frohn, H.-J., and Steinberg, C., *J. Fluorine Chem.*, 2004, vol. 125, p. 1771. https://doi.org/10.1016/j.fluchem.2004.09.011
- Krishnamurthy, S.S., Lappert, M.F., and Pedley, J.B., J. Chem. Soc. Dalton Trans., 1975, p. 1214. https://doi.org/10.1039/DT9750001214

- Haubold, W. and Weidlein, J., Z. Anorg. Allg. Chem., 1976, vol. 420, p. 251. https://doi.org/10.1002/zaac.19764200309
- Hansch, C., Leo, A., and Taft, R.W., *Chem. Rev.*, 1991, vol. 91, p. 165. https://doi.org/10.1021/cr00002a004
- Bromilow, J., Brownlee, R.T.C., Lopez, V.O., and Taft, R.W., *J. Org. Chem.*, 1979, vol. 44, p. 4766. https://doi.org/10.1021/jo00394a005
- Frohn H.-J., Franke, H., Fritzen, P., and Bardin, V.V., J. Organomet. Chem., 2000, vol. 598, p. 127. https://doi.org/10.1016/S0022-328X(99)00690-7
- Brownlee, R.T.C. and Taft, R.W., J. Am. Chem. Soc., 1970, vol. 92, p. 7007. https://doi.org/10.1021/ja00727a001
- Adonin N.Yu., Babushkin, D.E., Parmon, V.N., Bardin, V.V., Kostin, G.A., Mashukov, V.I., and Frohn, H.-J., *Tetrahedron*, 2008, vol. 64, p. 5920. https://doi.org/10.1016/j.tet.2008.04.043

- Adonin, N.Yu., Bardin, V.V., and Frohn, H.-J., *Collect. Czech. Chem. Commun.*, 2008, vol. 73, p. 1681. https://doi.org/10.1135/cccc20081681
- Sundararaman, A. and Jäkle, F., J. Organomet. Chem., 2003, vol. 681, p. 134. https://doi.org/10.1016/S0022-328X(03)00588-6
- Tian, J., Wang, S., Feng, Y., Li, J., and Collins, S., J. Mol. Catal. (A), 1999, vol. 144, p. 137. https://doi.org/10.1016/S1381-1169(98)00341-0
- Bamford, K.L., Chitnis, S.S., Qu Z.-W., and Stephan, D.W., *Chem. Eur. J.*, 2018, vol. 24, p. 16014. https://doi.org/10.1002/chem.201804705
- Duchteau, R., Lancaster, S.J., and Thornton-Pett, M., Bochmann, M., *Organometallics*, 1997, vol. 16, p. 4995. https://doi.org/10.1021/om970433j
- Nöth, H. and Wrackmeyer, B., Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, Berlin: Springer, 1978, p. 129.