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Stereoselective construction of highly substituted five-membered carbocycles with multiple chiral
centres is described. Sharpless kinetic resolution was applied as the key step to prepare the required
2,3-epoxy alcohols and a Ti(III) radical mediated opening of the epoxide ring followed by intramolecular
trapping of the generated radical with a suitably placed a,b-unsaturated ester resulted in the formation of
five-membered carbocycles with up to three consecutive new chiral centres stereoselectively fixed.
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Stereoselective C–C bond forming reaction based on free radi-
cals is a challenging task and an attractive scenario in the synthetic
organic community.1 Cp2Ti(III)Cl mediated reactions2 play a signif-
icant role in organic synthesis and for the last few years we have
been working extensively on the Ti(III) radical mediated epoxide
opening reactions. To our delight, chiral 1,3-diols3a, 3b (2) and qua-
ternary chiral centres3c (3) were obtained from epoxy alcohols (1)
upon treatment with Ti(III) radical, whereas highly functionalized
carbocycles3c/oxacycles3d/azacycles3e (5) were delivered from
compound 4 (Scheme 1). Successful application of this Ti(III) med-
iated radical transformation for synthetic studies of several biolog-
ically active natural products has already been demonstrated by
us.4

With the success obtained from our previous studies,3,4 we
were interested in investigating Ti(III) radical mediated epoxide
opening reaction for construction of highly functionalized five-
membered carbocycles.5 Cyclopentanoid motif is an important
and integral part of many biologically active natural products. Ear-
lier we have shown that functionalized six-membered carbocy-
cles3c can be synthesized from chiral 2,3-epoxy alcohol (4,
X = CH2; n = 2). Thus conceptually five-membered carbocycles can
be synthesized from 2,3-epoxy alcohols 6A–D via a similar sort
of Ti(III) mediated reaction and the products can be further manip-
ll rights reserved.
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raborty).
ulated to get the natural products like6 coronatine (8), (+)-epi-jas-
monic acid (9a), tuberonic acid (9b), b-D-glucopyranosyltuberonic
acid (9c) and the biosynthetic precursors 12-oxo-PDA (10a), OPC
8:0 (10b). Presence of trisubstituted unsaturation as shown in
6B,D can provide five-membered carbocycles with additional
methyl centre at the side arm so that some iridoids7 like nepetalac-
tone (11), iridomyrmecin (12), d-skytanthine (13) can be synthe-
sized (Fig. 1). In this Letter we wish to report the Ti(III) radical
mediated opening of 2,3-epoxy alcohols 6A–D to construct five-
membered carbocycles 7A–D with multiple chiral centres.

In a similar approach as that of our previous studies,3 we have
envisioned that various 2,3-epoxy alcohols 6A–D with in-built
a,b-unsaturation are the suitable candidates for making five-
membered carbocycles via a Ti(III) mediated epoxide opening reac-
tion. These epoxy alcohols can be prepared by applying Sharpless’
kinetic resolution8 method over the racemic allylic alcohols 14A–
D, which in turn could be obtained by successive Wittig olefin-
ation9 and desilylation of the aldehydes 15a–b. The required alde-
hydes 15a–b can be obtained from the alkynol 16 (Scheme 2).

We started our synthesis from the commercially available pent-
4-yn-1-ol (16) which was protected as its PMB ether using PMBBr
and NaH by applying known10 procedure to get compound 17 in
95% yield (Scheme 3). Treatment of the acetylide,11 generated from
compound 17 by using nBuLi, with aldehydes 18a–b resulted in the
formation of propargyl alcohols 19a–b in excellent yield.

Reaction of compounds 19a–b with Red-Al12 produced the
allylic alcohols 20a–b which were protected using TBSOTf and
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2,6-lutidine to get the TBS ethers 21a–b in good yield. Oxidative
cleavage of PMB ether functionality was carried out by employing
DDQ under buffered conditions13 to get the primary alcohols 22a–
H
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b which were oxidized to the corresponding aldehydes 15a–b
under Swern oxidation14 conditions.

Reaction of the aldehydes 15a–b with stabilized9 phosphoranes
Ph3PC(R0)COOEt (R0@H, CH3) produced the a,b-unsaturated esters
23A–D, which were desilylated using TBAF to get the allylic alco-
hols 14A–D (Scheme 4). Sharpless kinetic resolution (SKR)8 of the
racemic compounds 14A–D resulted in the formation of 2,3-epoxy
alcohols 6A–D in appropriate yields. To our pleasure, unreacted
allylic alcohols 24A–D could be converted back to the precursor
allylic alcohols 14A–D via a two step sequence that is Swern oxida-
tion14 and Luche reduction conditions.15

Now the stage was set to carry out the crucial Cp2Ti(III)Cl radi-
cal mediated epoxide ring opening reaction. Reaction of the epoxy
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Figure 2. Energy minimized structures of 7A–D with the observed strong NOESY
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alcohols 6A–D with Cp2Ti(III)Cl radical, which was generated16

in situ by the reaction of Cp2TiCl2, Zn, and fused ZnCl2, produced
a radical that underwent smooth intramolecular cyclization with
a,b-unsaturation, thereby forming a new C–C bond and led to
highly functionalized five-membered carbocycles 7A–D as the
major isolable products (Scheme 5).17
The relative stereochemistry of C2, C3 (7A–D), and C8 (7B,D)
centres was unequivocally assigned by incisive NMR studies18a

such as NOESY and HSQC experiments. These compounds have
been analyzed by using 1D–1H decoupling and 2D NMR tech-
niques, such as DQF-COSY and NOESY. The conformation of the
molecule is fixed by considering the observed coupling constants
and NOEs.

We have observed18b a consistency in NOE correlations for all of
the products 7A–D. Strong NOE cross-peaks C2H M C8Ha and Hb,
C2H M C7H, C6H M C8Ha and C1H M C7H were observed for the
compounds 7A–D. In addition to these observations, strong NOE
correlation C3H M C9H was also observed in compounds 7B,D
(Fig. 2). Interestingly, the fixation of C8 methyl stereo centre was
found to be the same in both 7B and 7D.

In conclusion, we have synthesized highly functionalized five-
membered carbocycles with multiple chiral centres by applying
Cp2Ti(III)Cl radical mediated ring opening of 2,3-epoxy alcohols
followed by intramolecular trapping of the radical with suitably
placed a,b-unsaturation. That three consecutive chiral centres



1712 M. Sreekanth et al. / Tetrahedron Letters 52 (2011) 1709–1712
were fixed in a single-step radical mediated reaction is notewor-
thy. Further studies are underway in the laboratory in order to ex-
tend this work for the application in the synthesis of natural
products and will be reported in due course.
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D = +28.9 (c 0.84, CHCl3); IR (neat): mmax 3391 (br), 2930, 1720,
1452, 1264, 1176, 1100, 1041, 740, 700 cm�1; 1H NMR (400 MHz, CDCl3): d
7.38–7.26 (m, 5H, ArH), 4.52 (s, 2H, PhCH2), 4.35 (td, J = 5.1, 2.6 Hz, 1H, C1H),
4.03 (q, J = 7.2 Hz, 2H, COOCH2CH3), 4.00 (m, 1H, C6H), 3.6 (d, J = 5.4 Hz, 2H,
C7H2), 2.56 (qd, J = 7.2, 5.09 Hz, 1H, C8H), 2.44 (m, 1H, C3H), 1.92 (m, 1H, C4Hb),
1.69 (m, 1H, C2H), 1.66 (m, 1H, C5Ha), 1.58 (m, 1H, C5Hb), 1.42 (m, 1H, C4Ha),
1.15 (t, J = 7.1 Hz, 3H, COOCH2CH3), 1.1 (d, J = 7.1 Hz, 3H, C9H3); 13C NMR
(100 MHz, CDCl3): d 175.6, 137.6, 128.5, 127.9, 127.8, 75.3, 74.0, 73.6, 70.8,
60.2, 48.3, 41.3, 41.0, 33.6, 25.3, 15.5, 14.3; ESI-MS: m/z (%) 337 (100) [M+H]+,
359 (95) [M+Na]+; HRMS (ESI): calcd for C19H28O5Na [M+Na]+ 359.1834, found
359.1820.

18. (a) Jeener, J.; Meier, B. H.; Bachmann, P.; Ernst, R. R. J. Chem. Phys. 1979, 71,
4546–4553; (b) Consistent pattern of a cis-junction has been observed in the
formation of five-membered targets and a trans-junction in six-membered
targets during our previous Ti(III) mediated epoxide opening reactions. See:
Refs. 3c–e and 4a.
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