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FORMATION OF NOVEL CAGE COMPOUNDS VIA ENDO-[3 + 2] CYCLOADDUCTS 

BETWEEN THIAZOLIUM N-METHYLIDES AND METHYLENECYCLOPROPENES 
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Thiazolium N-phenacylide and N-dicyanomethylide react with a methylenecyclo-

propene bearing an aryl group on the 4-position to give novel cage compounds, 6,8-
thiazapentacyclo[6.3.1.01,10 .01,11.01,12.07,11]dodecenes. The reaction proceeds via an 

intramolecular Diels-Alder reaction of the initially formed endo-[3 + 2] cyclo-

adducts, followed by a hydrogen shift. 

Methylenecyclopropenes undergo cycloaddition reactions with a variety of 1,3-dipoles. 1-7 The modes 

of these reactions depend not only on the nature of 1,3-dipoles, but also on the substituents at the 

4-position of methylenecyclopropenes.8 We have recently found that benzothiazolium N-phenacylide adds 

to the cyclic double bond of certain methylenecyclopropenes to give endo-[3 + 2] cycloadducts in good 

yields 9: This is the first example for the formation of stable [3 + 2] cycloadducts in the reactions of 
1,3-dipoles with methylenecyclopropenes. If a similar endo-[3 + 2] cycloadduct is formed in the re-

action of a thiazolium N-methylide with a methylenecyclopropene bearing an appropriate functional group 

at the 4-position, a cage compound might be expected to be formed via an intramolecular cyclization reaction 

of the endo-[3 + 2] cycloadduct, whose Dreiding model indicates that the carbons at the 3- and 8-po-

sitions are located closely enough to be linked 10 (Scheme 1).

This expectation is now realized: We wish to report here the formation of novel cage compounds from 

the reaction of thiazolium N-phenacylide 1 and N-dicyanomethylide 2 with 2-phenyl-2-(2,3-diphenyl-2-

cyclopropenylidene)acetonitrile 3 and 9-(2,3-diphenyl-2-cyclopropenylidene)anthrone 4, which reacted 

with benzothiazolium N-phenacylide to afford the corresponding endo-[3 + 2] cycloadducts as the sole 

products. 9 
First, we have investigated the reaction of 1 with 3. To a solution of 3-phenacylthiazolium 

bromide (622 mg, 2.2 mmol) and 311 (610 mg, 2.0 mmol) in dry THE (100 mL) was added NEt3 (221 mg, 2.2
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mmol)at 0℃, with stirring, under nitrogen. After the reaction mixture was stirred at 0℃for 2h,

and then at room temperature for 3 h, the precipitated triethylammonium bromide (quantitative) was 

removed by filtration. The filtrate was concentrated in vacuo to leave a residue, which was purified 

by chromatography on silica gel using benzene as an eluent to give 807 mg (79%) of the 1:1 adduct 5,

mp150-152℃ (dec), as pale yellow prisms. On the basis of spectral data12 as well as of the chemical
conversion described below, 5 was assigned as the expected endo-[3 + 2] cycloadduct. Upon heating in

THE under reflux for 3 h, 5 was transformed into two isomeric cage compounds 6, mp 177-178ｰC(dec),and

7, mp 170-172℃ (dec), in 51 and 31% yields, respectively.

On the other hand, the methylide 213 reacted with 3 to give directly analogous two cage compounds. 

A solution of 2 (298 mg, 2.0 mmol) and 3 (610 mg, 2.0 mmol) in dry THE (30 mL) was stirred at room 

temperature for 4 days until 3 was completely consumed. The reaction mixture was concentrated in vacuo 

to leave a residue, which was chromatographed on silica gel using benzene as an eluent to give 460 mg

(51%) and 329 mg (36%) of the 1:1 adducts 8, mp 274-276℃ (dec) , and 9, mp 259-260℃(dec), respective-

ly. 

On the basis of spectral data,14 each of isomers 6, 7 or 8, 9 was assigned as a stereoisomerc 

cage compound arising from an intermediary Diels-Alder adduct like A, followed by a hydrogen shift. A 

few Diels-Alder reactions involving aromatic nucleus as a part of diene component have been reported in 

intermolecular reactions. 15 In the 1H NMR spectra the 12-hydrogen in each higher melting cage compound 

appeared at lower field than that in each lower melting one. An inspection of the Dreiding models
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indicates that the 12-hydrogen in 6 or 8 is located in the deshielding cone of the cyano group on the 

2-position. Thus it can be concluded that the higher melting cage compound is 6 or 8 and the lower 

melting one is 7 or 9, respectively. 

The reaction of 2 with the methylenecyclopropene 416 in refluxing THE for 2 h gave a 76% yield of

the cage compound 10, mp 192-194℃ (dec), whose structure was again confirmed on the basis of spectral

data.17 It is evident that the reaction proceeds via an initial formation of the endo-[3 + 2] cyclo-

adduct B, followed by an intramolecular Diels-Alder reaction to yield C, which is converted to 10 by a 

hydrogen shift (Scheme 3). 
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