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Summary

The first example of monochydroboration of silylacetylenes with dichloro-~
borane is described. The reaction occurs regio- and stereo-specifically and leads
after methanolysis to isolable vinylboronic esters (III). The latter undergo photo
Z=E isomerization. Oxidation of III to the corresponding a-silaketone was ac-
complished in high yield using trimethylamine-N-oxide dihydrate. The overall
method represents a useful conversion of acetylenes to a-silaketones.

Acylsilanes, I (a-silaketones)**, have been the subject of many interesting
studies in recent years [1, 2]. Because of the sensitivity of I to acids and bases,
synthetic pathways to this important class of compounds have been somewhat
limited. The most general synthetic routes involve the use of dithiane [3] (see
below) and of vinyl methyl ethers [41.
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Other methods such as oxxdatmn of a-hydroxy silanes {5a], halogenatlon of
benzylsilanes [5b]} or suylatlon of imidoy! chlorides [5b] are often limited by -
the avaﬂablhty of proper startmg matenals or by the choxce of substxtuents. B
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We wish to report the use of dichloroborane in hydroboration of silyl. ,
acetylenes II and a2 new convenient synthetic route to a-silaketones I from II ac-
cording to Scheme 1.

SCHEME 1

i [e]
R—C=C—5iMe, HBXa >c=-c\ L9 p—cr,—CsiMe,

R .. SiMe,

(iIx) R = CH, (TiLa) (46%) (1) (88%)
(IIb) R = CH,=C(CH,) (IIIb) (48%) (Ib) (78%)
{Ic) R = n-C,H,, {Ic) (30%) (i) (80%)
(I1d) R = SiMe, {nag) (45%) (1d) (65%)

Since silylacetylenes II are readily accessible from monosubstituted alkynes this
represents an example of an alkyne as an acyl anion equivalent in the synthesis
of L. ’

The success af the above scheme depends on several critical factors; the cor-
rect regiochemisixy of hydroboration, the choice of X in the hydroborating re-
agent to permit separation of the product I from other species present and the
choice of oxidizing agent for the vinylboron species III to avoid destruction of
the product.

While hydroboration of silylacetylenes has been reported [6], the subsequent
oxidation of the expected vinylboranes has not been described. Further, in order
to simplify the conversion HI—1, it was considered important to choose a hydro-
borating reagent such that the group X need not be oxidized (i.e., X = OR, Cl).
Catecholborane had been shown to be a reagent of choice in monoaddition to
acetylenes [7] yet we found that with allylacetylenes IT addition of catechol-
borane and oxidation led to a mixture of products. Dichloroborane (IV) proved
to be a suitable reagent since it not only led to regiospecific monohydroboration
but the adducts could also be converted to the isolable vinylboronates V and
ultimately this reagent allowed ready separation of the final products. -
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The isolation of vinylboronic esters Va—Vc as the sole products® (in 30—50%
yield) on methanolysis of the initial adducts III (X = Cl), as well as their conver-
sion to I, VI and VII, were indicative of the regiospecificity and stereospecificity
of the hydroboration process. Thus the NMR spectrum of Vc showed a triplet
(J 6.7 Hz) at 5 6.27 ppm for the vinylic proton requiring placement of the boron
a to silicon. Photolysis of Va in benzene-d, led to Z=F isomerization with for-
mation of an 80/20 mixture of Va/VIa. During the photoisomerization Va=VIa
the vinylic proton experienced an upfield shift (from 7.37 to ~7.0 ppm), as ex-
pected, based on related studies [8]. Protonolysis of Ve in acetic acid to authen-
txc czs-l—hexyl -2-trimethylsilylethene (VII) further verifies the Z-configuration of

The regiospecificity observed in 11>V, with formation of the C—B bond e to
Si, is in agreement with similar directive effects observed in hydralumination of
11 [9], in hydroboration with dicyclohexylborane®** and in certain hydrobora-
tions of vinylsilanes [10]}. It is interesting to note that selective hydroboration of
the silylacetylene can e achieved in the presence of an alkene functional group
(cf. lIb).

The usual oxidation of boranes employs alkaline hydrogen peroxide. Use of .
this reagent with the vinylboronic esters V did not lead to ketones I. Indeed, we
found that silaketones I rapidly decomposed in the presence of alkaline peroxide.
On the other hand, trimethylamine oxide as the commercially available dihydrate
led to silaketones I in excellent yield. This oxidizing agent for vinyl boranes
offers a definite advantage over hydrogen peroxide and no special pretreatmentis
required as in the case of anhydrous trimethylamine oxide [11]. In the case of Vb,
oxidation was accompanied by isomerization to the conjugated ketone VIII.

. o
MeN—O - 2

SN0 - 2H0 Ia,Ic Yb — - Sime

CoHg ‘ 3

(¥t

Ya,¥c

With bistrimethyisilylacetylene (IId), hydroboration/oxidation led to a 50/50
mixture of Id and bis(trimethylsilyl)ethanal*. The thermal and photochemlstry
of these compounds is currently under investigation.

The following procedure for the preparation of Ia is representative®*. To :
0.1 mole of silylacetylene (Ila) in pentane (100 ml) at —78°C was added dichloro-

* Although dihydrob tion of It with dichlorocborane is possible {13], the presence of only small amounts
(<5%) of unreacted II after the hydroboration step suggests that this reaction pathway is not solely re-
" sponsible far the low vields of I11. The low stabilits: of 171 is also suggested by attempts to extend this
. procednxe to the synthesis of germanium or tin analogues of Vb, which led only to dark nuxtures from
. which the corresponding vinylboronic ester could not be isolated. -
"Protonolysls of Va, Vb and Vd led to mixtures of cis and trans isomers and t.hzs intetestmg phenomenon

winbedxscnssedinnhu:papcr . i
"'Aﬂer the present study had been conclud da mport appeared on hydrobouﬁon of l-mmethylsilyx-

1 octyne with: dlcydohexylbonne in which the boron added xeciospedﬁcally to Si [Gd]. .
*mtnmhﬁon ‘ot this unusaal resilt will be discussed in detail in the full paper.
y'the. hydrobonﬁoa[oxid-don of IT wras carried out wilhou: isolation of m, vields o! 20—45% fori
we:éobhined. ciﬁ.n‘ ‘that i:ouﬁon ot ] o did not sxmﬁcanﬁy reduce the overall yield.of the keeom. i
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borane etherate IV (0.1 mol) and boron trichloride (50 ml! 2.0 M in CsH;, ) under
an argon atmosphere.-After 12 h at room temperature, the supernatant liquid at
0°C was treated with an equimolar mixture of trimethylamine/methanol (20 g
solution; 10% excess). After addition of 100 m! of pentane, the mixture was
filtered and distilled to give 11.3 g of HIa (46%), b.p. 96—98°C (1.0 torr)*.

Oxidation of IIla (46 mmol) was accomplished by heating in benzene (100 ml)
and trimethylamine-N-oxide dihydride (40 mmol) for 1 h under reflux. After
washing and drying, distillation gave 7.8 g (88%) of Ia, b.p. 78°C (1 torr) (lit. [2]
50°C (0.08 torr)).
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