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a b s t r a c t

Efficient desymmetrization of isophthalaldehyde allows a scalable asymmetric synthesis of cinnamylated
sesquiterpenoid 1. We have shown that 1 forms useful, property-altered composites with peptides and
related oligomers. The current synthesis promises to expand those efforts considerably.

� 2010 Elsevier Ltd. All rights reserved.
We recently described structure 1 (Fig. 1) as a reagent capable of
forming useful composites with peptides and related heteropoly-
mers.1 In short processing sequences, the molecule is amalgamated
with unprotected polyamides in parallel—holding 1 constant and
varying the oligomer. This provides us unique collections of com-
plex peptidomimetics (e.g., 5).2 As our experiments in this area ex-
pand toward being systematic, an ample supply of pure 1 is
essential. Herein we describe a preparation to meet those needs.

Our initial synthesis of 1 relied upon copper promoted 1,4-addi-
tion of homopropargylic organozinc species 3 to cinnamaldehyde
2.1 The resultant trimethylsilyl enol ether was parlayed ((1)
PhSeCl; (2) HF/pyridine; (3) CCl3C(Me)2CO2Cl, DMAP, pyridine;
(4) NaIO4) into isomeric enals 4. Subsequent chiral imidazolidi-
none-catalyzed conjugate reduction3 afforded 1. In our hands, the
conjugate reduction required high catalyst loads to proceed at a
useful rate and provided 1 in moderate enantiomeric excess. This
was inconvenient because the oily substance 1 could not be further
resolved via crystallization.4 To circumvent these limitations and
to provide flexible, scalable access to optically active 1 and congen-
ers, an alternate synthesis was developed.

Commercial isophthaldehyde is desymmetrized5 via controlled
olefination employing (R)-(�)phenylglycine derived phosphono-
acetyl oxazolidinone 6 (Scheme 1).6 Adduct 7 is then treated with
vinyl magnesium chloride to generate a mixture of diastereoiso-
meric aryl vinyl carbinols 8. MeReO3 catalyzed allylic alcohol
transposition7 followed by in situ silylation with TBSCl affords a
single isomer of cinnamyl ether 9. Homopropargylic Grignard re-
agent 108 is added conjugately to the acrylimide in 9 affording
11 in high yield and diastereomeric excess. After degradation of
the silicon groups in 11 with TBAF, the terminal alkyne in 12 par-
ticipates smoothly in a Sonogashira cross-coupling reaction with
methylheptenone derived enol triflate 13.9 The resultant diene-
yne containing imide 14 is reduced with a twofold excess of (i-
ll rights reserved.

n).
Bu)2AlH in toluene to afford aldehyde 15, from which target 1 is
derived via acylation with 2,2,2-trichloro-1,1-dimethylethyl
chloroformate.

The above route entails eight linear steps, proceeds in 17% over-
all yield, and provides 1 in 91% ee.10,11 It gives access to our target
Figure 1. Structure 1 can be incorporated into peptides to generate complex
composites such as 5 (Ref. 1). Our initial synthesis of 1 utilized fragments 2 and 3 en
route to penultimate intermediate 4.
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Scheme 1. Reagents and conditions: (a) isophthaladehyde (2 equiv), LiCl, iPr2NEt, MeCN, rt, 48 h (74% from (4R)-5,5-dimethyl-4-phenyloxazolidin-2-one); (b)
vinylmagnesium chloride, toluene, �78 �C; (c) MeReO3 (3 mol %), toluene, rt, 12 h; TBSCI (1.2 equiv), imidazole, rt, 45 min (79% from 7); (d) 10 (1.2 equiv), CuI, Me2S/THF,
�40 �C ? �20 �C, 96%; (e) TBAF, THF, �10 �C, 1 h, 95%; (f) 13, Pd(PPh3)2Cl2 (2.5 mol %), CuI (5 mol %), iPr2NH, 0 �C ? rt, THF,1 h, 61%; (g) (i-Bu)2AIH (3 equiv), toluene, �78 �C;
(h) CCl3C(Me)2CO2Cl (1.4 equiv), DMAP, pyridine, DCM, �40 �C, 2 h (52% from 14).
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in multi-gram batches without incident. It has the added benefit of
introducing the diene-yne appendage incrementally in two seg-
ments, wherein both can be controllably varied in future iterations.
Along these lines, we look forward to creating numerous congeners
of this novel grafting material.
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