CHEMISTRY LETTERS, pp. 1655-1658, 1985.

DIASTEREOSELECTIVE SYNTHESIS OF 2,3-EPOXYALKYLPHOSPHONATES AND PHOSPHINATES BY EPOXIDATION

Toshio NAGASE,[†] Takayuki KAWASHIMA,^{*} and Naoki INAMOTO^{*} Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113

The title compounds were prepared highly diastereoselectively by treatment of 2-alkenylphosphonates and phosphinates with m-chloroperbenzoic acid or MoO₅·HMPA complex in good yields.

In a previous paper,¹⁾ we have reported new synthetic route to 2-hydroxyalkylphosphoryl compounds (1) from 2,3-epoxyalkylphosphoryl derivatives (2) and nucleophiles. These 2-hydroxyalkylphosphoryl compounds (1) are converted to the corresponding olefins in moderate to good yields by cesium fluoride induced reaction developed by us 1,2 (Scheme 1). In the case of $R^3 \neq H$, the resulting olefins are

usually obtained as a mixture of E- and Z-isomers. When pure E- or Z-olefin is desired, a diastereomer mixture of 1 must be separated by chromatography, recrystallization, and so on. But if 2 can be prepared in a highly diastereoselective manner, it is not necessary to separate diastereomers of 1.

We now report on diastereoselective epoxidation of 2-alkenylphosphonates (3) with two oxidizing reagents.³⁾ In the process of this investigation, a possibility of 1,3-asymmetric induction controlled by a chiral center on a phosphorus atom was also studied using racemic 2-alkenylarylphosphinates (4)(Scheme 2).

Diethyl 1-substituted 2-alkenylphosphonates (3) were treated with m-chloroperbenzoic acid (MCPBA) in methanol-free dichloromethane to yield a diastereomer mixture of the corresponding 2,3-epoxyalkylphosphonates (erythro- and threo-2) in good or high yields. The diastereomer ratio was determined by ³¹P NMR and ¹³C NMR spectroscopies. The results are shown in Table 1.

⁺ Present address: Department of Resources Chemistry, Faculty of Engineering, Ehime University, Bunkyo-cho, Matsuyama 790.

3	R ¹	R2	R3	Temp /ºC	2	Yield/%	Diastereomer Ratio
							(erythro:threo)
a	Н	н	Me	rt	a	94	69:31
b	н	Me	Me	0	b	87	69 : 31
с	н	Me	Et	rt	С	100	72:28
đ	Me	н	Me	rt	d	85	73:27 (from E-3d)
							>96: 4 (from Z- 3d)
е	Me	н	Et	0	е	89	72:28 (from E- 3e)
							88:12 (from Z- 3e)
f	Me	н	PhCH ₂	rt	f	95	76:24 (from E- 3f)
							77:23 (from Z- 3f)
ga)	н	Me	PhCH(OH)	rt	g	59	84:16
ha)	Me	н	PhCH(OH)	rt	h	87	88:12 (from E- 3h)
							>96: 4 (from Z-3h)

Table 1. Epoxidation of 3 with MCPBA

a) Diastereomer ratios of these hydroxyphosphonates were >95:5.

Diastereomer ratio was more than about 70:30 in all cases and the temperaturedependence was observed as usual.⁴⁾ Especially Z-2-butenyl phosphonates series showed higher diastereoselectivity than others. Z-1-Methyl-2-butenylphosphonate (Z-3d) exhibited the highest selectivity and the minor diastereomer from Z-3d could not be detected by ³¹P NMR and ¹³C NMR spectroscopies, indicating the diastereomer ratio of more than 96:4. The exact stereochemistry of the major epoxide was determined to be erythro by comparison of the diastereomer mixture of diethyl 2hydroxy-1-methylheptylphosphonate prepared by the reaction of **2a** with butylmagnesium bromide in the presence of a catalytic amount of CuI¹) with the threo predominant mixture obtained by reduction of diethyl 1-methyl-2-oxoheptylphosphonate with sodium borohydride.⁵)

According to these experimental data, the present high diastereoselectivity can be reasonably explained as follows: In the transition state, unexpectedly peracid molecule does not interact with the oxygen atom of phosphoryl group and two transition states **A** and **B** would be imagined. This model is similar to the Felkin's model.⁶⁾ In the present case peracid molecule approaches to the double bond from

the reverse side of the phosphoryl group as shown in A and B. In the transition state B, a large steric repulsion would exist between Z-substituent R^1 and substituent R^3 adjacent to phosphoryl group, but in the transition state A this repulsion no longer exists. Consequently epoxidation would proceed predominantly through the transition state A to produce mainly erythro isomer. When the bulkiness of both R^1 and R^3 increases at the same time, the steric repulsion between R^2 and R^3 could not be ignored and the decrease of diastereoselectivity would be presumed (see 2e and 2f in Table 1). In the case of 2-alkenylphosphonate (3) without any Z-substituents, such a higher selectivity would not be observed because of the absence of the steric repulsion between R^1 and R^3 in B, which was supported experimentally (3a-c and E-3d-f in Table 1). Reactions using 3g and 3h were more diastereoselective than others, because these compounds are considered as homoallyl alcohols,⁷ which are well known to be oxidized diastereoselectively by treatment with MCPBA or other oxidants.⁸

3	2	Yield/%	Diastereomer Ratio			
			(erythro:threo)			
b	b	61	75:25			
d	d	31	95: 5 (from E- 3d)			
			>96: 4 (from Z-3d)			
е	е	79	93: 7 (from E- 3e)			
			88:12 (from Z- 3e)			
f	f	65	95: 5 (from E- 3f)			
			>96: 4 (from Z-3f)			

Table 2. Epoxidation of 3 with MoO₅•HMPA

In order to investigate 1,3-asymmetric induction based on chirality on a phosphorus atom, we also treated alkyl 2-alkenylarylphosphinates (4) with MCPBA in dichloromethane. The results are summarized in Table 3. Z-Butenyl derivatives afford the corresponding epoxides more diastereoselectively than others. The use of 1-naphthyl group as an aryl moiety gave better results. Although the exact stereochemistry of the major diastereomer has not be determined yet, it can be

O=P(OEt)2

presumed from consideration by molecular model that the reaction would proceed via the transition state C rather than the transition state D, which has large steric repulsion between Z-methyl group and an alkoxyl group.

Table 3. Epoxidation of 2-Alkenylarylphosphinates (4)

4	R1	R ²	R	Ar	5	Yield/%	Diastereomer Ratio
a	Me	н	Et	o-Anisyl	a	80	53:47 (from E- 4a)
							73 : 27 (from Z- 4a)
b	Me	н	Et	1-Naphthyl	b	91	72:28 (from E- 4b)
							77:23 (from Z- 4b)
с	Me	н	Me	1-Naphthyl	с	62	57:43 (from E- 4c)
							>96: 4 (from Z-4c)

The present investigation seems to be very important in the following points: (1) Through highly diastereoselective formation of epoxyalkylphosphonate pure Zolefin could be obtained, and (2) 1,3-asymmetric induction based on a chiral center on a phosphorus atom could be shown experimentally.

References

- 1) T. Nagase, T. Kawashima, and N. Inamoto, Chem. Lett., <u>1984</u>, 1997.
- 2) T. Kawashima, T. Ishii, and N. Inamoto, Chem. Lett., 1983, 1375.
- 3) Very recently, McElroy and Warren reported independently on the diastereoselective synthesis of 2,3-epoxyalkylphosphine oxides by the reaction of the corresponding 2,3-alkenylphosphine oxides with MCPBA; A. B. McElroy and S. Warren, Tetrahedron Lett., <u>26</u>, 2119 (1985).
- 4) For example, when the epoxidation of 3e was carried out at room temperature diastereomer ratios (erythro:threo) were 67:33 (from E-3e) and 84:16 (from 2-3e).
- 5) For 2-oxoalkylphosphonic diamides, see: E. J. Corey and G. T. Kwiatkowski, J. Am. Chem. Soc., <u>88</u>, 5653 (1966). For 2-oxoalkyldiphenylphosphine oxides, see:
 A. D. Buss, R. Mason, and S. Warren, Tetrahedron Lett., <u>24</u>, 5293 (1983).
- 6) M. Cherest, H. Felkin, and N. Prudent, Tetrahedron Lett., <u>1968</u>, 2199.
- 7) Similar results were observed by McElroy and Warren, see: Ref. 3.
- 8) K. B. Sharpless and T. R. Verhoeven, Aldrichimica Acta, 12, 62 (1979).

(Received August 14, 1985)