PRELIMINARY NOTE

<u>A Stereoselective Reduction of Polyfluorinated Olefins. A Facile Con-</u> version of Difluoromethylene Olefins to Fluoromethylene Olefins <u>via</u> Vinyl Phosphoranes and Vinyl Phosphonium Salts

DONALD J. BURTON, SEIJI SHIN-YA and RICHARD D. HOWELLS

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242(U.S.A.)

Metallation of fluoromethylene olefins provides useful intermediates for further stereochemical synthetic sequences [1]. The requisite olefin precursors have been obtained either by chemical modification of fluorinated olefins [2-6] or Wittig type reactions [7]. These methods yield stereoselectively either the thermodynamically stable olefin or mixtures enriched in the more stable isomer. Here, we report a facile synthesis of the <u>thermodynamically less stable fluoromethylene olefin isomer</u> from the readily accessible vinyl phosphorane or vinyl phosphonium salt.

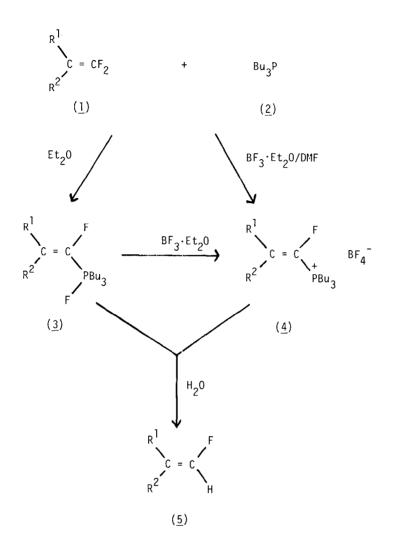
It has been established that the reaction of <u>F</u>-1-alkenes (<u>1</u>) with tertiary phosphine (<u>2</u>) stereoselectively yields vinyl phosphoranes (<u>3</u>) [8] or vinyl phosphonium salts [9]. Hydrolysis of (<u>3</u>) or (<u>4</u>) with water or dilute base stereospecifically gives the fluoromethylene olefin with retention of stereochemistry.

Table 1 summarizes the data for several representative olefins. Note that vinyl phosphorane formation occurs with formation of <u>only</u> the terminal phosphorane. No isomeric phosphoranes which could be formed by an  $S_N^2$ <sup>-</sup> reaction were observed. Hydrolysis results in replacement of phosphorous with hydrogen (or deuterium). Since (<u>3</u>) or (<u>4</u>) are produced <u>insitu</u> [8], the overall net result is a one-pot stereoselective reduction of the difluoromethylene olefin to the fluoromethylene olefin.

This method gives <u>only</u> the (E)-isomer from <u>F</u>-propene. Earlier work has conclusively shown the (Z)-isomer to be the thermodynamically stable isomer of this pair [3]. In all cases, the stereoselective formation of the vinyl phosphorane with the  $R_F$  group <u>trans</u> to phosphorous is observed. Hydrolysis gives the olefin with the  $R_F$  group and hydrogen <u>trans</u>.

## TABLE 1

Hydrolysis of vinylphosphorane  $(\underline{3})$  or vinyl phosphonium tetrafluoroborate  $(\underline{4})$  to fluoromethylene olefin  $(\underline{5})$ 


| ( <u>3</u> ) or ( <u>4</u> )                               | E/Z <sup>C</sup> | %( <u>5</u> ) <sup>a,b,d</sup> | E/Z( <u>5</u> ) <sup>C</sup> |
|------------------------------------------------------------|------------------|--------------------------------|------------------------------|
| $CF_{3}CF = CFP(F)Bu_{3}$                                  | 0/100            | 97 (51)                        | 100/0                        |
| $CF_3(CF_2)_2CF = CFP(F)Bu_3$                              | 0/100            | - (72)                         | 100/0                        |
| $CF_3(CF_2)_4CF = CFP(F)Bu_3$                              | 0/100            | 85                             | 100/0                        |
| PhC(CF <sub>3</sub> ) = CFP(F)Bu <sub>3</sub> <sup>e</sup> | 88/12            | 100 (61)                       | 12/88                        |
| $PhC(CF_2CF_3) = CFP(F)Bu_3$                               | 92/8             | - (47)                         | 0/100                        |
| $p-MeOC_6H_4C(CF_3) = CFP(F)Bu_3$                          | 95/5             | 100 (52)                       | 9/91                         |
| $[PhCH = CFPBu_3] BF_4^{-f}$                               | 100/0            | - (87)                         | 0/100                        |

a) Determined by <sup>19</sup>F NMR vs. internal  $C_{6}H_5CF_3$ , b) Yield in parentheses is overall <u>isolated</u> yield from olefin (1)., c) E/Z ratio is determined from the coupling constant in the <sup>19</sup>F NMR spectrum., d) All products exhibited spectral data in accord with the assigned structure and gave satisfactory mass spectral or analytical data., e) hydrolysis with D<sub>2</sub>O gave only the deuterated olefin, f) DMF used as solvent.

In cases where  $(\underline{3})$  is unstable or is formed slowly in ether, the reaction can be carried out in moist DMF to give  $(\underline{5})$  directly. However, stereochemical control is decreased under these conditions.

 $CF_3CC1 = CF_2 + Bu_3P \xrightarrow{H_2O/DMF} CF_3CC1 = CFH 54\%(E/Z = 87/13)$  $PhCC1 = CF_2 + Bu_3P \xrightarrow{H_2O/DMF} PhCC1 = CFH 73\%(71/29 mixture)$ 

544



This remarkably simple, rapid, and clean reaction provides a ready synthetic entry to the isomeric olefins currently inaccessible by existing methods.

## ACKNOWLEDGEMENTS

We thank the National Science Foundation for financial support of this research.

REFERENCES

- 1 J.L. Hahnfeld and D.J. Burton, Tetrahedron Letters, (1975), 773.
- 2 D. Sianesi and R. Fontanelli, Ann. Chem. (Italy), 55 (1965), 850.
- 3 R.N. Haszeldine, J.R. McAllister, and A.E. Tipping, J.C.S. Perkin Trans I, (1975), 2015.
- 4 L.I. Zakharkin and V.N. Lebedev, J. Fluorine Chem., 3 (1973/1974), 237
- 5 S. Hayashi, T. Nakai, N. Ishikawa, D.J. Burton, D.G. Naae, and H.S. Kesling, Chemistry Letters, (1979), 983.
- 6 A.L. Anderson, R.T. Bogan, and D.J. Burton, J. Fluorine Chem., <u>1</u> (1971/1972), 121.
- 7 D.J. Burton and P.E. Greenlimb, J. Org. Chem., <u>40</u> (1975) 2796., J. Fluorine Chem., 3 (1973/1974), 447.
- 8 D.J. Burton, S. Shin-ya, and R.D. Howells, J. Amer. Chem. Soc., <u>101</u> (1979), 3689.
- 9 The vinyl phosphoranes (<u>3</u>) slowly react with DMF when this solvent is employed, (4) is the preferred intermediate.