

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 15 (2004) 573-575

Tetrahedron: Asymmetry

Synthesis of enantiopure 1,4-ethyl- and 1,4-ethylene-bridged cispentacin by lipase-catalyzed enantioselective ring opening of β-lactams

Enikő Forró and Ferenc Fülöp*

Institute of Pharmaceutical Chemistry, University of Szeged, H-6701 Szeged, PO Box 121, Hungary

Received 4 November 2003; revised 18 December 2003; accepted 22 December 2003

Abstract—1,4-Ethyl- and 1,4-ethylene-bridged cispentacin enantiomers 1a, 1c and 2a, 2c were prepared through the lipase-catalyzed enantioselective ring opening of racemic *exo*-3-azatricyclo[4.2.1.0^{2.5}]nonan-4-one, (\pm) –1, and *exo*-3-azatricyclo[4.2.1.0^{2.5}]non-7-en-4-one, (\pm) –2. High enantioselectivity (*E* >200) was observed when the Lipolase-catalyzed reactions were performed with 1 equiv of H₂O in disopropyl ether at 70 °C. The resolved β-amino acids 1a and 2a (yield 46%) and β-lactams 1b and 2b (yield ≥40%) could be easily separated. The ring opening of lactam enantiomers with 18% HCl afforded the corresponding β-amino acid hydrochloride enantiomers (ee ≥98%).

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

A number of new enzymatic and asymmetric syntheses of β -amino acids or their derivatives and β -lactams in enantiomerically pure form have been elaborated over recent years, and most of them have been reviewed.^{1–3} An important indirect enzymatic route to enantiopure β amino acids or esters proceeds through the lipase-catalyzed asymmetric acylation of the primary *OH* group of *N*-hydroxymethylated β -lactams, or the lipase-catalyzed hydrolysis of the corresponding ester derivatives, followed by ring opening to the corresponding β -amino acid or ester.^{4–8} We have recently published a direct enzymatic method to enantiopure valuable β -amino acids (e.g., cispentacin with strong antibiotic and antifungal activities) through the lipase-catalyzed enantioselective hydrolysis of β -lactams in an organic solvent.^{9,10}

Herein, we report the enantioselective ring opening of racemic *exo*-3-azatricyclo[$4.2.1.0^{2.5}$]nonan-4-one, (\pm)-1, and *exo*-3-azatricyclo[$4.2.1.0^{2.5}$]non-7-en-4-one, (\pm)-2.

2. Results and discussion

The racemic β -lactams 1 and 2 were prepared from bicyclo[2.2.1]hept-2-ene 3 and bicyclo[2.2.1]hepta-2,5-

diene **4** by 1,2-dipolar cycloaddition of chlorosulfonyl isocyanate (O=C=N-SO₂Cl; CSI) (Scheme 1).¹¹

Scheme 1.

In an earlier study, Lipolase (lipase B from Candida antarctica, produced by submerged fermentation of a genetically modified Aspergillus oryzae microorganism and adsorbed on a macroporous resin) proved to be applicable for the enantioselective ring opening of 6-azabicyclo[3.2.0]heptan-7-one, 7-azabicyclo[4.2.0]octan-8-one, 8-azabicyclo[5.2.0]nonan-9-one and 9-azabicyclo[6.2.0]decan-10-one.¹⁰ High enantioselectivities (E > 200) were observed when the reactions were performed with H_2O (1 equiv) in diisopropyl ether at 60 °C. These results¹⁰ on the lipase-catalyzed enantioselective hydrolysis of β -lactams suggested the possibility of the enantioselective ring opening of (\pm) -1 and (\pm) -2 (Scheme 2).

^{*} Corresponding author. Tel.: +36-62-545564; fax: +36-62-545705; e-mail: fulop@pharma.szote.u-szeged.hu

^{0957-4166/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2003.12.034

Scheme 2.

Even though the *E* value in the Lipolase-catalyzed ring opening is excellent, the reaction rate for the ring opening in the case of **2** clearly increases with increasing temperature (after 96 h, 1 equiv of H₂O, 50 mg mL⁻¹ Lipolase, 60 °C: conv. = 22%, ee_s = 27%, ee_p >95%; after 96 h, 1 equiv of H₂O, 50 mg mL⁻¹ Lipolase, 65 °C: conv. = 26%, ee_s = 33%, ee_p >95%; after 93 h, 1 equiv of H₂O, 50 mg mL⁻¹ Lipolase, 70 °C: conv. = 30%, ee_s = 41%, ee_p >95%).¹²

On the basis of the preliminary results, the gram-scale resolutions of (\pm) -1 and (\pm) -2 were performed with l equiv of water in the presence of Lipolase in diisopropyl ether at 70 °C. In spite of the long reaction times, the products had an excellent enantiomeric excess at 50% conversion. The results are reported in Table 1.

The transformations involving the ring opening of β -lactams **1b** and **2b** with 18% aqueous HCl resulted in the enantiomers of the β -amino acid hydrochlorides **1c**·HCl and **2c**·HCl (Scheme 3). Treatment of amino acids **1a** and **2a** with 18% aqueous HCl resulted in enantiopure hydrochlorides **1a**·HCl and **2a**·HCl. The specific rotations for the enantiomers prepared are reported in Table 2.

The absolute configuration in the case of **1** was proved by comparing the specific rotation values with the literature data (Tables 1 and 2). When (1R,2R,5S,6S)-3azatricyclo[4.2.1.0^{2.5}]non-7-en-4-one **2b** was reduced

Scheme 3.

Table	2.	Specific	rotation	of	the	enantiomers	prepared
-------	----	----------	----------	----	-----	-------------	----------

Amino acid hydrochloride	Ee (%)	$\left[\alpha\right]_{\mathrm{D}}^{25\mathrm{a}}$
1 <i>S</i> ,2 <i>R</i> ,3 <i>S</i> ,4 <i>R</i> -1a·HCl ¹⁶	99	+3.8 ($c = 0.4$, MeOH) ^b
1 <i>R</i> ,2 <i>S</i> ,3 <i>R</i> ,4 <i>S</i> -1c·HCl ¹⁷	99	-3.8 (c = 0.3, MeOH)
1 <i>R</i> ,2 <i>R</i> ,3 <i>S</i> ,4 <i>S</i> -2a·HCl ¹⁶	99	-13.2 (c = 0.5; MeOH)
		$-10.8 (c = 0.5; H_2O)$
1 <i>S</i> ,2 <i>S</i> ,3 <i>R</i> ,4 <i>R</i> - 2 c [.] HCl ¹⁷	99	+13.4 ($c = 0.4$; MeOH)
		+10.6 ($c = 0.4$; H ₂ O)

^a Optical rotations were measured with a Perkin–Elmer 341 polarimeter.

^b $[\alpha]_{D}^{20} = +3.9 \ (c \ 2, \text{ MeOH}).^{18}$

catalytically in the presence of cyclohexene as a hydrogen donor,⁷ the analyzed chromatogram peaks indicated that the 1*S*,2*R*,5*S*,6*R*-3-azatricyclo[4.2.1.0^{2.5}]nonan-4one **1b** was formed. The specific rotation value for the isolated crude product: $[\alpha]_D^{25} = +61.2$ (*c* 0.3, CHCl₃) is close to the $[\alpha_D^{25} = +64.1$ (*c* 0.5, CHCl₃) reported for **1b**. Therefore, the absolute configuration for **2b** is (1*R*,2*R*,5*S*,6*S*) and that for **2a** is (1*R*,2*R*,3*S*,4*S*).

In conclusion, a very efficient and simple direct enzymatic synthesis of 1,4-ethyl- and 1,4-ethylene-bridged cispentacin enantiomers in an organic medium has been developed. The products (β -lactam and β -amino acid) could be easily separated. Transformations by ring opening of the β -lactams **1b** and **2b** with 18% aqueous HCl gave the enantiomers of the β -amino acid hydrochlorides **1c**·HCl and **2c**·HCl (ee >99%).

Table 1. Lipolase-catalyzed ring opening of $(\pm)\textbf{-}1^{13}$ and $(\pm)\textbf{-}2^{14}$

	Time	Conver- sion (%)	Ε	β-Lactam(1b – 2b)				β-Amino acid(1a–2a)			
	(day)			Yield ^a (%)	Isomer	Ee ^b (%)	$\left[\alpha\right]_{\mathrm{D}}^{25_{\mathrm{C}}}$	Yield ^a (%)	Isomer	Ee ^d (%)	$[\alpha]_{D}^{25}d$
(±)-1	11	50	>200	40	1 <i>S</i> ,2 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>	99	+64.1 ^e	46	1 <i>S</i> ,2 <i>R</i> ,3 <i>S</i> ,4 <i>R</i>	99	+9.1 ^{f,g}
(±)- 2	8	50	>200	47	1 <i>R</i> ,2 <i>R</i> ,5 <i>S</i> ,6 <i>S</i>	99	+123.7 ^e	46	1 <i>R</i> ,2 <i>R</i> ,3 <i>S</i> ,4 <i>S</i>	98	-12.2^{h}

^a Yield 100% at 50% conversion.

^b According to GC [CP-Chirasil-Dex CB column, $120 \,^{\circ}$ C for $4 \,^{\text{min}} \rightarrow 170 \,^{\circ}$ C (temperature rise $10 \,^{\circ}$ C/min; $140 \,^{\text{kPa}}$) retention times (min): **1b**: 10.95 (antipode: 10.77); **2b**: 10.23 (antipode: 10.09)].

^cOptical rotations were measured with a Perkin-Elmer 341 polarimeter.

^d Determined by GC [after double derivatization (i) diazomethane; (ii) acetic anhydride in the presence of 4-dimethylaminopyridine and pyridine (CP-Chirasil-Dex CB column, 120 °C for 5 min \rightarrow 170 °C (temperature rise 10 °C/min; 70 kPa) retention times (min): **1a**: 14.01 (antipode: 14.20); **2a**: 12.96 (antipode: 13.11)].

 $^{e}c = 0.5$; CHCl₃.

 $^{\rm f}c = 0.5; \, {\rm H}_2 {\rm O}.$

 ${}^{g}[\alpha]_{D}^{20} = -8 \ (c \ 1.4, \ H_{2}O) \ for \ (1R, 2S, 3R, 4S) - 1c^{15}.$

 $^{h}c = 0.4; H_2O.$

Acknowledgements

The authors acknowledge receipt of OTKA grants T 034901 and TS 040888, FKFP grant 0115/2001 and a Békésy Fellowship for EF (grant no. 181/2002).

References and notes

- 1. Fülöp, F. Chem. Rev. 2001, 101, 2181-2204.
- 2. Park, K.; Kurth, M. J. Tetrahedron 2002, 58, 8629-8659.
- (a) Palomo, C.; Oiarbide, M.; Landa, A.; Esnal, A.; Linden, A. J. Org. Chem. 2001, 66, 4180; (b) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Synlett 2001, 1813.
- 4. Csomós, P.; Kanerva, L. T.; Bernáth, G.; Fülöp, F. Tetrahedron: Asymmetry 1996, 7, 1789.
- 5. Kámán, J.; Forró, E.; Fülöp, F. *Tetrahedron: Asymmetry* 2000, 11, 1593.
- Fülöp, F.; Palkó, M.; Kámán, J.; Lázár, L.; Sillanpää, R. Tetrahedron: Asymmetry 2000, 11, 4179.
- Forró, E.; Árva, J.; Fülöp, F. Tetrahedron: Asymmetry 2001, 12, 643.
- 8. Forró, E.; Fülöp, F. Tetrahedron: Asymmetry 2001, 12, 2351.
- Park, S.; Forró, E.; Grewal, H.; Fülöp, F.; Kazlauskas, R. J. Adv. Synth. Catal. 2003, 345, 986.
- 10. Forró, E.; Fülöp, F. Org. Lett. 2003, 5, 1209.
- 11. Moriconi, E. J.; Crawford, W. C. J. Org. Chem. 1967, 32, 370.
- 12. In a typical small-scale experiment, racemic β-lactam (0.05 M solution) in *i*Pr₂O (2 mL) was added to Lipolase (50 mg mL⁻¹). Water (1 equiv) was added. The mixture was shaken at 60, 65 or 70 °C. The progress of the reaction was followed by taking samples from the reaction mixture at intervals and analyzing them by gas chromatography. The ee values for the unreacted β-lactam enantiomers were determined by gas chromatography on a Chromopak Chiralsil-Dex CB column (25 m), while the ees for the ringopened amino acids produced (during preliminary experiments) were calculated by using hexadecane [CP-Chirasil-Dex CB column, 120 °C for 4 min → 170 °C (temperature rise 10 °C/min; 140 kPa) retention time 8.19 min] as an internal standard.¹⁰
- 13. Racemic 1¹¹ (1 g, 7.28 mmol) was dissolved in *i*Pr₂O (40 mL). Lipolase (2 g, 50 mg mL⁻¹) and water (0.13 mL, 7.28 mmol) were added and the mixture was shaken in an incubator shaker at 70 °C for 11 days. The reaction was stopped by filtering off the enzyme at 50% conversion. The solvent was evaporated and the residue of (1*S*,2*R*,5*S*,6*R*)-**1b** crystallized [0.4 g, 40%; $[\alpha]_D^{25} = +64.1$ (*c* 0.5; CHCl₃); mp 58–60 °C (recrystallized from diisopropyl ether); ee 99%]. The filtered enzyme was washed with distilled water (3×20 mL), and the water was evaporated, yielding the crystalline β-amino acid (1*S*,2*R*,3*S*,4*R*)-**1a** [0.52 g, 46%; $[\alpha]_D^{25} = +9.1$ (*c* 0.5; H₂O); slow melting (229–242 °C, recrystallized from water/acetone), ee = 99%].

¹H NMR (400 MHz, D₂O) δ (ppm) for **1a**: 1.26–1.76 (6H, m, 3×CH₂), 2.4, 2.51 (2H, br s, 2×CH), 2.59 (1H, d, J = 8.1, H-2), 3.38 (1H, d, J = 8.1, H-3). ¹³C NMR (100.62 MHz, D₂O) δ (ppm) 26.2, 28.5, 33.9, 41.6, 42.4, 52.1, 55.1, 180.1. Anal. Calcd for C₈H₁₃NO₂: C, 61.91; H, 8.44; N, 9.03. Found: C, 62.06; H, 8.51; N, 10.14.

¹H NMR (400 MHz, CDCl₃) δ (ppm) for **1b**: 1.02–1.69 (6H, m, 3×CH₂), 2.35, 2.41 (2H, br s, 2×CH), 2.97 (1H,

d, J = 1.4, H-5), 3.38 (1H, d, J = 3.1, H-2), 5.85 (1H, br s, NH). ¹³C NMR (100.62 MHz, CDCl₃) δ (ppm) 25.3, 27.2, 31.2, 34.2, 38.5, 53.8, 58.9, 170.7. Anal. Calcd for C₈H₁₁NO: C, 70.04; H, 8.08; N, 10.21. Found: C, 69.89; H, 8.15; N, 10.46.

- 14. With the procedure described above, the reaction of racemic 2^{11} (1 g, 7.39 mmol) in iPr_2O (40 mL) in the presence of Lipolase (2 g, 50 mg mL⁻¹) and water (0.13 mL, 7.39 mmol) afforded the β -lactam (1R,2R,5S,6S)-**2b** [0.47 g, 47%; $[\alpha]_D^{25} = +123.7$ (*c* 0.5; CHCl₃); mp 89–91 °C (recrystallized from diisopropyl ether); ee 99%] and β -amino acid (1R,2R,3S,4S)-**2a** [0.52 g, 46%; $[\alpha]_D^{25} = -12.2$ (*c* 0.4; H₂O); mp >260 °C (recrystallized from water/acetone); ee = 98%] in 8 days.
 - ¹H NMR (400 MHz, D₂O) δ (ppm) for **2a**: 1.6 (1H, d, J = 7.8, CH_AH_B), 1.87 (1H, d, J = 7.8, CH_AH_B), 2.49 (1H, d, J = 6.3, H-2) 3.01, 3.07 (2H, br s, 2×CH), 3.29 (1H, d, J = 6.2, H-3) 6.19–6.39 (2H, m, CH=CH). ¹³C NMR (100.62 MHz, D₂O) δ (ppm) 43.6, 46.7, 46.9, 47.6, 51.9, 135.1, 140.5, 180.2. Anal. Calcd for C₈H₁₁NO₂: C, 62.73; H, 7.24; N, 9.14. Found: C, 62.6; H, 7.19; N, 9.14. ¹H NMR (400 MHz, CDCl₃) δ (ppm) for **2b**: 1.65 (1H, d, J = 9.7, CH_AH_B), 1.81 (1H, d, J = 9.7, CH_AH_B), 2.88, 2.93 (2H, br s, 2×CH), 3.05 (1H, d, J = 1.6, H-2), 3.51 (1H, d, J = 3.4, H-3), 5.96 (1H, br s, NH), 6.13–6.25 (2H, m, CH=CH).¹³C NMR (100.62 MHz, D₂O) δ (ppm) 39.3, 41.4, 44.3, 53.7, 58.8, 136.6, 138.8, 171.4. Anal. Calcd for C₈H₉NO: C, 71.09; H, 6.71; N, 10.36. Found: C, 70.98; H, 6.69; N, 10.36.
- Bolm, C.; Schiffers, I.; Atodiresei, I.; Hackenberger, C. P. R. *Tetrahedron: Asymmetry* 2003, 14, 3455.
- 16. When **1a** or **2a** (0.2 g) was treated with 18% HCl (7 mL), (1S,2R,3S,4R)-**1a**·HCl [0.21 g, 85%; $[\alpha]_D^{25} = +3.8$ (c 0.4; MeOH); mp 196–199 °C (H₂O); ee = 99%] and (1*R*,2*R*,3*S*,4*S*)-**2a**·HCl [0.23 g, 96%; $[\alpha]_{\rm D}^{25} = -10.8$ (*c* 0.5; H₂O), -13.2 (c = 0.5; MeOH); mp 206–210 °C (H₂O); ee = 99%] were obtained. ¹H NMR (400 MHz, D_2O) δ (ppm) for **1a**·HCl: 1.29–1.82 (6H, m, 3×CH₂), 2.42, 2.62 (2H, br s, 2×CH), 2.85 (1H, d, J = 8.1, H-2), 3.47 (1H, d, J = 8.1, H-3). ¹³C NMR $(100.62 \text{ MHz}, D_2 \text{O}) \delta$ (ppm) 26.2, 28.3, 33.9, 41.4, 42.4, 50.7, 55.3, 177.7. Anal. Calcd for C₈H₁₃NO₂·HCl: C, 50.14; H, 7.36; N, 7.31. Found: C, 50.16; H, 7.52; N, 7.48. ¹H NMR (400 MHz, D₂O) δ (ppm) for **2a**·HCl: 1.66 (1H, d, J = 9.2, CH_AH_B), 1.92 (1H, d, J = 9.4, CH_AH_B), 2.56 (1H, d, J = 5.9, H-2) 3.04, 3.21 (2H, br s, 2×CH), 3.39 (1H, d, J = 5.8, H-3) 6.24–6.39 (2H, m, CH=CH). ¹³C NMR (100.62 MHz, D₂O) δ (ppm) 43.6, 44.7, 46.7, 47.5, 52.8, 136.1, 139.6, 176.3. Anal. Calcd for C₈H₁₁NO₂·HCl: C, 50.67; H, 6.38; N, 7.39. Found: C, 50.76; H, 6.16; N, 7.24.
- 17. **1b** or **2b** (0.2 g) was refluxed in 18% HCl (7 mL) for 3 h. The solvent was evaporated off, and the products were recrystallized from water, which afforded white crystals of (1*R*,2*S*,3*R*,4*S*)-**1c**·HCl [0.21 g, 77%, $[\alpha]_{25}^{25} = -3.8$ (*c* 0.3; MeOH); mp 198–207 °C (H₂O); ee 99%] or (1*S*,2*S*,3*R*,4*R*)-**2c**·HCl [0.23 g, 84%, $[\alpha]_{25}^{25} = +10.6$ (*c* 0.4; H₂O), +13.4 (*c* = 0.4; MeOH); mp 196–210 °C (H₂O); ee 99%], respectively.

The ¹H NMR (400 MHz, D₂O) and ¹³C NMR (100.62 MHz, D₂O) δ (ppm) data for (1*R*,2*S*,3*R*,4*S*)-**1c**·HCl or (1*S*,2*S*,3*R*,4*R*)-**2c**·HCl are similar to those for (1*S*,2*R*,3*S*,4*R*)-**1a**·HCl and (1*R*,2*R*,3*S*,4*S*)-**2a**·HCl. Anal. found for (1*R*,2*S*,3*R*,4*S*)-**1c**·HCl: C, 49.88; H, 7.33; N, 7.24. Anal. found for (1*S*,2*S*,3*R*,4*R*)-**2c**·HCl: C, 50.67; H, 6.22; N, 7.45.

 Kanerva, L. T.; Csomós, P.; Sundholm, O.; Bernáth, G.; Fülöp, F. Tetrahedron: Asymmetry 1996, 7, 1705–1716.