Jeffrey P. Whitten,**a James R. McCarthy,b Donald P. Matthewsb

- ^a Merrell Dow Research Institute, Indianapolis Center, Indianapolis, IN 46268-0470, USA
- b Merrell Dow Research Institute, Cincinnati Center, Cincinnati, OH 45215-6300, USA

Dimethylaminopyridine activates cyanogen bromide towards C-C bond formation by forming 1-cyano-4-dimethylaminopyridinium bromide. The latter serves as a convenient reagent for the synthesis of 2-cyanoimidazoles.

The convenient introduction of the cyano group onto heterocyclic systems is important in many synthetic transformations. 1-9 Recently we reported a one-step synthesis of 2-

June 1988 Communications 471

cyanoimidazoles (4) via N-cyanoimidazole ylides utilizing cyanogen chloride.⁸ However, cyanogen chloride is an extremely toxic gas, which is not readily available. Thus, we have investigated alternative reagents for the synthesis of 2-cyanoimidazoles.

Cyanogen bromide is a readily available solid, but when reacted with imidazole derivatives predominately yields bromoimidazoles. We wish to report that modification of cyanogen bromide to a cyanogen bromide-dimethylaminopyridine salt, 1-cyano-4-dimethylaminopyridinium bromide (2)¹¹ (CAP), activates cyanogen bromide towards carbon—carbon bond formation and serves as a convenient reagent for the cyanation of imidazoles 1.

1-Cyano-4-dimethylaminopyridinium bromide (2) (CAP), has been reported¹¹ to cyanate enzymes but surprisingly, this activation of cyanogen bromide towards carbon-carbon bond formation has not been exploited in synthetic organic chemistry. We felt that the conversion of cyanogen bromide to CAP should also serve as a convenient cyanation agent for the ylide reaction with *N*-substituted imidazoles 1.

Reaction of 2.5 equivalents of CAP (2) in dimethylformamide with N-substituted imidazoles provided good yields of 2-cyano-imidazoles 4 (Table) via intermediate 3. The yield of product 4 was dependent on the prompt addition of the N-substituted imidazole to freshly formed CAP in dimethylformamide as well as using an excess of the reagent. For example, adding 1-benzylimidazole to 2.5 equivalents of freshly formed CAP provided a 77% yield of 4a, whereas adding 1-benzylimidazole 0.5 h after CAP formation resulted in a 23% yield of 4a. Fodor has reported that N-cyanoammonium bromides rapidly decom-

pose between -10° and 10° C.¹² Addition of cyanogen bromide to a mixture of 1-benzylimidazole and dimethylaminopyridine resulted in exclusive formation of 2-bromo-1-benzylimidazole.¹⁰ Thus both prior formation of the reagent CAP and its expedient use are necessary.

The nature of the cyanation catalyst was investigated. As CAP forms a precipitate in dimethylformamide a more soluble form was investigated. Both 4-(4-methyl-1-piperidyl)pyridine, a less powerful alkylating catalyst and 4-(1-pyrrolidinyl)pyridine, a more potent alkylating catalyst than 4-dimethylaminopyridine, ¹³ form dimethylformamide soluble complexes but gives mixtures of 2-bromo- and 2-cyano-1-benzylimidazoles.

Table. Compounds 4a-h Prepared

Prod- uct	R ¹	R ²	Yield (%)	mp (°C) or bp (°C)/ mbar ^a	Molecular Formulab or Lit. mp (°C)	¹H-NMR (CDCl₃/TMS)° δ, J(Hz)	¹³ C-NMR (CDCl ₃ /TMS) ^d δ
4a	H	CH ₂ C ₆ H ₅	77	51-52	51-521	5.18 (s, 2H); 6.98–7.38 (m, 7H)	51.4; 111.13; 121.8; 123.55; 127.73; 128.96; 129.26; 131.91; 134.32
4b	Н	CH ₂ OCH ₂ CH ₂ Si(CH ₃) ₃	64°	110-120/ 0.53	110-120/0.531	0.0 (s, 9 H); 0.91 (t, 2 H, J = 8.2); 3.55 (t, 2 H, J = 8.2); 5.57 (s, 2 H); 7.3 (d, 1 H, J = 1.5); 7.84 (d, 1 H, J = 1.5)	-1.56; 17.52; 67.34; 75.92; 110.63; 121.83; 123.06; 132.08
4c	4-CH ₃	CH ₂ C ₆ H ₅	74 ^f	51.5~52.5	51.5-52.51	2.22 (s, 3H); 5.21 (s, 2H); 6.82 (s, 1H); 7.22–7.39 (m, 5H)	13.74; 51.3; 111.29; 120.36; 127.72; 128.4; 129.24; 134.52; 142.51
4d	5-CH ₃	CH ₂ C ₆ H ₅	74 ^f	112-113	113-115 ¹⁵	2.18 (s, 3H); 5.26 (s, 2H); 6.81 (s, 1H); 6.99–7.4 (m, 5H)	9.94; 48.86; 111.62; 126.66; 126.69; 128.59; 129.26; 130.37; 132.57; 134.30
4 e	Н	CH ₃	78	65-70/ 0.53	$C_5H_5N_3$ (107.1)	3.95 (s, 2H); 7.20 (s, 1H); 7.55 (s, 1H)	
4f	5-C1	CH ₃	43	87-89	90-9116	3.80 (s, 3H); 7.03 (s, 1H)	-
4g	4-C ₆ H ₅	CH ₂ C₀H₅	90°	95-96	95-961	5.22 (s, 2H); 7.13-7.81 (m, 11H)	51.6; 111.13; 118.79; 121.76; 125.16; 127.78; 128.13; 128.77; 129.05; 129.34; 132.11; 134.16; 144.54
4h	Н	2-CH ₂ -thienyl	72	64-65	$C_9H_7N_3S$ (189.2)	5.42 (s. 2H); 6.86-7.35 (m, 5H)	

^a Bath temperature of Kugelrohr distillation.

^b Satisfactory microanalyses obtained: $C \pm 0.27$, $H \pm 0.21$, $N \pm 0.24$.

Recorded on a Varian EM-360 spectrometer.

d Recorded on a Varian XL-300 spectrometer.

^e Based upon recovered starting material.

Starting material was a mixture of 4- and 5-CH₃ substituted indole. The product mixture was separted by flash chromatography into 4c and 4d. The yield denotes combined yield.

The yield of 2-cyanoimidazoles 4 using CAP are similar to those using cyanogen chloride, even though only 2.5 equivalents of CAP were used compared to 5 equivalents of cyanogen chloride. With the 2-(trimethylsilyl)ethoxymethyl (SEM) protected imidazole 1b⁸ partial deprotection by reaction of a CAP with the SEM group was observed. Compounds 4c and 4d were easily separated by flash chromatography to give the 4- and the 5-isomers.

Thus, 1-cyano-4-dimethylaminopyridinum bromide (CAP) activates cyanogen bromide towards cyanation and provides a new carbon-carbon bond forming reagent. CAP is a convenient cyanogen chloride replacement and it should find additional application in synthetic organic chemistry as a source of *positive cyanide*.

1-Benzyl-2-cyanoimidazole (4a); Typical Procedure:

Under nitrogen, a solution of 4-dimethylaminopyridine (6.1 g, 0.05 mol) in DMF (100 mL) is cooled to 10°C and cyanogen bromide (5.3 g, 0.05 mol) added. The reaction exotherms to 20°C and a pale yellow precipitate of CAP forms. The mixture is then allowed to cool to 10°C (ca. 5 min), and 1-benzylimidazole (1 a; 15 3.2 g, 0.02 mol) is added. The mixture is stirred at 40°C for 16 h and then quenched by pouring into 0.1 M aq. NaHCO₃ solution (600 mL), and extracted with EtOAc (3×200 mL). The combined EtOAc extract is dried (Na₂SO₄), and concentrated to give 4.1 g of crude product. Flash chromatography (400 g silica gel/EtOAc) gives 4a; yield: 2.83 g (77%); mp 51–52°C (cyclohexane).

Received: 31 July 1987; revised: 13 January 1988

- (1) McCarthy, J.R., Matthews, D.P., Whitten, J.P. Tetrahedron Lett. 1985, 6273.
- (2) Barltrop, J.A., Day, A.C., Mack, A.G., Shahrisa, A., Wakamatsu, S. J. Chem. Soc. Chem. Commun. 1981, 604.
- (3) Kimoto, H., Cohen, L.A. J. Org. Chem. 1980, 45, 3831.
- (4) Kimoto, H., Cohen, L.A. J. Org. Chem. 1979, 44, 2902.
- (5) Abramovitch, R. A., Cue, B. W. J. Am. Chem. Soc. 1976, 98, 1478.
- (6) Oledenhof, C., Cornelisse, J. Recl. Trav. Chim. Pays-Bas 1978, 97, 35.
- (7) Whitten, J.P., Matthews, D.P., McCarthy, J.R. J. Org. Chem. 1986, 51, 3228.
- (8) Whitten, J.P., Matthews, D.P., McCarthy, J.R. J. Org. Chem. 1986, 51, 1891.
- (9) Whitten, J.P., Wagner, E.R., Matthews, D.P., McCarthy, J.R., unpublished work.
- (10) Langenbeck, W. J. Prakt. Chem. 1928, 119, 77.
- (11) Waselman, M., Guibe-Jampel, E., Raoult, A., Busse, W.D. J. Chem. Soc. Chem. Commun. 1976, 21.
- (12) Fodor, G., Abidi, S., Carpenter, T.C. J. Org. Chem. 1974, 39, 1507.
- (13) Scriven, E.F.V. Chem. Soc. Rev. 1983, 12, 129.
- (14) All starting materials are commercially available except 2b and 2h, which are prepared by literature methods as in Refs. 7 and 1, respectively.
- (15) Ferguson, I.Y., Schofield, K. J. Chem. Soc. Perkin Trans 1 1975, 275.
- (16) Del Corona, L., Massaroli, G.G., Signorelli, G., Musa, G. Bull. Soc. Ital. Farm. Osp. 1971, 110, 645.