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 The 5-8-5-membered tricyclic diterpene, cycloaraneosene, has 

been totally synthesized via the stereoselective condensation of 

two units of optically active iridoids, Cope rearrangement and 

chemical reduction of the tetrasubstituted C=C bond. The NMR spec-

trum of synthetic 9α-hydroxycycloaraneosene was not identical with

the congener product, and the natural alcohol is likely to be 8β-

hydroxyl derivative.

 In this paper, we describe the total synthesis of cycloaraneosene (1), a 

metabolite from Sordaria araneosa Cainl) and a biogenetic precursor of other oxy-

genated metabolites. To date, although several workers have reported the related 

works, no synthesis of the natural products in the family of 5-8-5-membered tri-

cyclic derivatives has been reported.

 Among the natural 5-8-5-membered tricyclic derivatives, stereochemistry of 1 

has two outstanding features: i) sy-relation between C-h-H and C-11-Me is reverse 

to cotylenins2) and fusicoccins3) and ii) C-2-H and C-3-H of the saturated ring A 

have cis-s-geometry. The former arrangement can be created by the stereospecific 

Cope rearrangement of a dimeric condensate of appropriate iridoids.4) Therefore, 

in order to synthesize 1, the stereoselective reduction of the tetrasubstituted
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double bond, which is indispensable for the Cope rearrangement, is crucial. 

 The key intermediates, the diol (2) [ IH NMRS) 6=O.83(3H, d, J=6 Hz), 0.90 

(3H, d, J=7 Hz), 0.95(3H, d, J=7 Hz), 1.12(3H, s), 1.61(3H, br s), 3.19(IH, dd, J=

11, 8 Hz), 3.48(IH, dd, J=11, 5.5 Hz), and 3.70(2H, m). 13C NMR 6=15.1, 16.7, 

17.8, 22.2, 23.0, 24.5, 28.8, 29.4, 30.8, 36.5, 37.4, 37.7, 46.6, 47.2, 53.2, 
56.3, 63.2, 64.4, 135.5, and 135.8] and its derivatives, diacetate (3) and mono-
tetrahydropyranyl (THP) ether (4), were prepared via the CrCl2-mediated con-
densation of (3S,8R)-9-benzyloxy-7-chloroirid-l-ene (5) and (3S)-irid-l-en-7-al 

(6) and subsequent chemical conversions. 4,6)

a) H2/Pt02/AcOH; LiA1H4/THF, b) Na,tBuOH/HMPA; p-TsOH/MeOH, c) (COCl)2-DMSO; Et3N, 

d) TMSSO3CF3/Et3N, e) Pd(OAc)2/MeCN, f) DIBAH/Toluene; 102(Rosebengal); PPh3, 

g) MsCl/Py; CrCl3-1/2LiA1H4/DMF-THF, h) Ac 20/Py, i) Li,tBuOH/Iiq.NH3.

 To generate the correct stereochemistry of A-ring, 7) the hydrogenation must 

occur from the s-side of 2 or its derivatives. This is likely to be the case 

since, a molecular model shows that the a-side of A-ring is more blocked than a-

side by the substituents on the C-ring. Although every attempt failed to hydro-

genate 2, the Pt02-hydrogenation of 3 did occur in acetic acid at 70 C. After 

hydrolysis, a dihydro diol (7a) [ IH NMR 6=0.82, 0.84, 0.89, 1.00(each 3H, d,
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J=7 Hz), 1.04(3H, s), 3.35(1H, dd, J=10.5, 8 Hz), and 3.5-3.8(3H, m). 13C NMR 6=

15.5, 17.1, 18.1, 22.4, 24.2, 24.9, 27.7, 31.5, 32.5, 33.2, 36.8, 37.4, 38.0, 

41.7, 44.9, 47.0, 47.9, 56.1, 64.1, and 65.41 was obtained in 39% yield, together 

with two by-products, 7b and 7c, in 277 and 16% yields, respectively. 

 The catalytic deuteration of 3 under comparable conditions proved that the 

major product, 7a, is the required isomer. Namely, the 13C NMR spectra of corres-

ponding deuterio derivatives showed the complete disappearance of C-2, C-3, and C-
16 signals to indicate a rapid hydrogen. exchange prior to the reduction. On this 

ground, no deuterium incorporation at C-6 proved the intactness of configuration 
at this point. On the basis of the well-known relationship of chemical shift with 

stereochemistry, the configurations cf these products were ascertained; i.e., re-

latively high field signals for the secondary methyls of 7a and 7c suggested that 

these methyls are cis to the vicinal substituent.3) By the same argument on the 

C-1 methylene carbons, relative configurations of C-2 and C-6 of.7a and 7c were 

assigned to be trans and cis. Thus, 7a=_s required cis-trans isomer. Remained 

7b, exhibiting both methyl and methylene signals at lower field, must be the 

trans-trans-isomer. 

 More selectively, 7a can be prepared via the following route: 4 was treated 

with sodium metal and tert-butanol at room temperature in hexamethylphosphoric 

triamide9) to afford, after hydrolysis of protecting group, a 22:4:1-mixture of 

7a, 7b, and the fourth isomer (7d) in 82% yield. The absence of 7c was predict-

able from the mechanistic view point, and the 13C NMR spectrum of 7d are reason-

able as the trans-cis-isomer on the above mentioned criteria. 10) These figures are 

found in the illustrations of 7a-d. 

 Subsequently, to construct the tricyclic skeleton with proper functionalities 

for 1, 7a was oxidized to dialdehyde (8) [ 1H NMR 6=0.79, 0.80, 0.86, 1.11(each 

3H, d, J=7 Hz), 1.17(3H, s), 9.67(1H, d, J=2 Hz), and 9.70(1H, br s)], which was 

then converted to an isomeric mixture of bis-silylenol ethers (9). Upon 

Pd(OAc) 2-treatment, 11) the less hindered enol ether of 9 was preferably oxidized 

to give 10; the yield of accompanied dialdehyde (1 1) was only 9%. Diisobutyl-

aluminumhydride reduction and sensitized photooxidation of 10 yielded hydroxyl al-

dehyde (12) [ 1H NMR 6=0.85, 1.08, 1.09(each 3H, d, J=7 Hz), 1.18(3H, s), 3.39 

(1H, sept, J=7 Hz), 3.97(2H, br s), 4.81(1H, br s), 5.06(1H, m), and 9.91(1H, s)]. 

Consecutive treatment of 12 with methanesulfonyl chloride and CrCl212) gave a 

single cyclisate (13) [ 1H NMR 6=0.84, 0.91, 0.96(each 3H, d, J=7 Hz), 1.20(3H, 

s), 2.73(1H, sept, J=7 Hz), 4.77(1H, dd, J=8, 7 Hz), 4.79(1H, br s), and 4.95(1H, 

br s). 13C NMR 6=17.6, 21.5, 21.9, 27.1, 27.9, 28.6, 29.8, 31.4, 38.2, 38.7, 40.7, 

41.0, 45.1, 50.4, 51.5, 69.1, 113.5, 139.3, 148.2, and 148.71. The chemical shift 

of the singles methyl, 6=1.20, indicated the sin-relationship with the allylic 

hydroxyl group. 

 The final transformation was achieved through a reductive elimination of the 

allyl alcohol via the acetate (14). Compound 1 thus obtained was identical with 

natural (-)-cycloaraneosene in all respects, including the optical rotation. 13) 

 Incidentally, the structure of 13 is same to that proposed for a congener 

metabolite, hydroxycycloaraneosene (13 A).1) However, the physical data of 13 

was clearly different from those recorded for the natural product or its epimer
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derived by chemical transformations.1) Thus,13, colorless scales, mp 64-65 C, 

revealed a negative rotation ([a] D-21.8), On the other hand,13A, a colorless 

oil, was positive ([a]D +7.5). In the 1H NMR spectrum, the singlet methyl of 

13A was at 6=1.02. Presumably, 13A is 8s-hydroxy derivative of 1. 

Synthesis of other members of terpenoids via this strategy is currently in 

progress. 14)
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