Synthese, Kernresonanzspektren und Schwingungsspektren der Hexamethyltrisilane und Pentamethyltrisilane (XMe₂Si)₂SiMe₂ und (XMe₂Si)₂SiMeX (X=H, F, Cl, Br, I, Ph, OMe)

KARLA SCHENZEL

Martin Luther Universität Halle-Wittenberg, FB Chemie, Institut für Analytische Chemie, PSF 8, 06120 Halle, Germany

und

KARL HASSLER

T.U. Graz, Institut für Anorganische Chemie, Stremayrgasse 16, A-8010 Graz, Austria

(Received 13 October 1992; in final form 18 December 1992; accepted 8 February 1993)

Zusammenfassung — Synthese, IR, RAMAN und ²⁹Si-Spektren der o. g. Verbindungen werden beschrieben. SiSi-Kraftkonstanten, die mittels Normalkoordinatenanalyse berechnet wurden, werden mit den ²⁹Si²⁹Si-Kopplungskonstanten verglichen.

Abstract—The syntheses, IR, Raman and ²⁹Si spectra of the title compounds are reported. SiSi force constants, calculated with the aid of normal coordinate analyses, are compared with ²⁹Si²⁹Si coupling constants.

EINLEITUNG

IN MEHREREN Arbeiten haben wir uns mit der Synthese, Schwingungs-, Kernresonanzund Photoelektronenspektroskopie methylierter Trisilane beschäftigt [1-5]. Uns interessieren dabei (neben synthetischen Fragestellungen) vor allem Beziehungen zwischen Struktur (z.B. Art und Anzahl der Substituenten an den Si-Atomen) und Bindungsstärken oder SiSi-Kopplungskonstanten bzw. chemischen Verschiebungen der Si-Atome. So konnten wir einen nahezu linearen Zusammenhang zwischen f(SiSi) und $J(2^{29}Si^{29}Si)$ nachweisen, der eine Vorzeichenumkehr der Kopplungskonstante J(SiSi) bei Molekülen mit kleiner SiSi-Kraftkonstante vorhersagt [4]. Ähnliche Verhältnisse gelten auch für die CC-Bindung [6]. Interessanterweise weisen aber Silane mit langen IBu^tSiSiBu^tSiBu^tI) SiSi-Bindungen (z.B. durchaus nicht immer kleine SiSi-Kopplungskonstanten auf [7]. Am effektivsten können SiSi-Kraftkonstanten (und damit auch Kopplungskonstanten) durch Ladungen an den Si-Atomen beeinflußt werden, wie das Beispiel LiSi $(SiMe_3)_3$ [J(SiSi) = 14 Hz [8], $f(SiSi) \approx 100-120$ Nm⁻¹ [9]] zeigt. In dieser Arbeit sollen die Trisilane (Me2XSi)2SiMe2 und (Me2XSi)2SiMeX eingehend untersucht werden.

EXPERIMENTELLER TEIL

Substanzen

Die Darstellung halogenierter Silane ausgehend von phenylierten Derivaten nach:

$$Ph_n Si_m Me_{2m+2-n} \xrightarrow{HX} X_n Si_m Me_{2m+2-n} (X = CI, Br, I)$$

verläuft im allgemeinen in sehr guten Ausbeuten [10] und ist ohne größeren experimentellen Aufwand (kein Arbeiten unter Druck) durchführbar. 1,3-Diphenylhexamethyltrisilan und 1,2,3-Triphenylpentamethyltrisilan sind zudem bequem nach

$$2 \operatorname{LiSiMe_2Ph} + \operatorname{Cl_2SiMe_2} \rightarrow (PhMe_2Si)_2SiMe_2 + 2 \operatorname{LiCl}$$
$$2 \operatorname{LiSiMe_2Ph} + \operatorname{Cl_2SiMePh} \rightarrow (PhMe_2Si)_2SiMePh + 2 \operatorname{LiCl}$$

х	% C _{ber.}	%C _{gem.}	%H _{ber.}	%H _{gem}	%C _{ber.}	%C _{gem.}	%H _{ber.}	%H _{gem}
		(XMe ₂ S	i)2SiMe2			(XMe ₂ S	i)2SiMeX	
н					36,97	36,65	11,17	11,80
F	33,92	33,68	8,54	8,48	27,75	27,87	6,99	7,0
Cl					22,59	22,54	5,69	5,65
Br	21,56	31,20	5,43	5,28	15,05	15,40	3,79	3,79
I	16,83	16,54	4,24	4,05	11,12	11,60	2.80	2.76
Ph	65,78	65,57	8,59	8,44	70,70	70.82	7.74	7.75
OMe	40,62	40,22	10,23	10,34	18,05	38,01	9,58	9,50

Tabelle 1. Ergebnisse der Elementaranalysen der Trisilane (XMe₂Si)₂SiMe₂ und (XMe₂Si)₂SiMeX

in größeren Mengen zugänglich. Einen zweiten Syntheseweg zu den 1,3-Disubstituierten Trisilanen bietet die Chlorierung von Si₃Me₈ mit ClSiMe₃/AlCl₃ zu (ClMe₂Si)₂SiMe₂, das mit LiAlH₄ zu (HMe₂Si)₂SiMe₂ umgesetzt werden kann. Die nachfolgende Bromierung mit HCBr₃ bzw. Iodierung mit HCI₃ gelingt mit nahezu 100% Ausbeute. Nachfolgend sind die Synthesen der einzelnen Verbindungen beschrieben, die Ergebnisse der Elementaranalysen finden sich in Tabelle 1.

(PhMe₂Si)₂SiMe₂ und (PhMe₂Si)₂SiMePh

100 g (370 mmol) (Me₂PhSi)₂, gelöst in 1000 ml THF, werden mit etwa 8 g Li (867 mmol) zu Me₂PhSiLi umgesetzt (12 h). Man filtriert vom nicht umgesetzten Li über Glaswolle und tropft die dunkelblaue Lösung im Verlauf einiger Stunden zu 47,7 g (370 mmol) Me₂SiCl₂ bzw. 70,6 g (370 mmol) MePhSiCl₂, gelöst in etwa 800 ml THF. Während dieser Zeit wird mit einem Eisbad gekühlt (0°C). Nach Beendigung der Reaktion wird von den entstandenen Salzen filtriert, das Lösungsmittel abgezogen und der Rückstand i.V. fraktioniert. $Kp_{0,05} = 117-120^{\circ}$ C für (Me₂PhSi)₂SiMe₂ (Ausbeute 90 g = 74%); $Kp_{0,05} = 170^{\circ}$ C für (Me₂PhSi)₂SiMePh (Ausbeute 110 g = 76%).

(CIMe₂Si)₂SiMe₂ und (CIMe₂Si)₂SiMeCl

15 g (PhMe₂Si)₂SiMe₂ (45,7 mmol) bzw. (PhMe₂Si)₂SiMePh (38,5 mmol), werden in etwa 20 ml trockenem Benzol gelöst und mit einer Spatelspitze AlCl₃ versetzt. Dann wird über zwei Stunden in mäßigem Strom trockener, gasförmiger Chlorwasserstoff eingeleitet und das Reaktionsgemisch anschließend fraktioniert. Man erhält etwa 8,5 g (77%) (ClMe₂Si)₂SiMe₂ ($Kp_{30} = 108^{\circ}$ C) bzw. 7 g (68%) (ClMe₂Si)₂SiMeCl ($Kp_4 = 65-68^{\circ}$ C).

1,3-Dichlorhexamethyltrisilan ist in der Literatur bereits beschrieben [11].

(BrMe₂Si)₂SiMe₂, (IMe₂Si)₂SiMe₂, (BrMe₂Si)₂SiMeBr und (IMe₂Si)₂SiMeI

Die Reaktion von $Ph_2Si_3Me_6$ und $Ph_3Si_3Me_5$ mit HBr/AlBr₃ bzw. HI/AlI₃ liefert in etwa 70-80% igen Ausbeuten die entsprechenden Brom- und Iodderivate, die destillativ gereinigt werden können.

(BrMe ₂ Si) ₂ SiMe ₂ :	$Kp_{12} = 105 - 107^{\circ}C$
(BrMe ₂ Si) ₂ SiMeBr:	$Kp_3 = 97 - 100^{\circ}C$
(IMe ₂ Si) ₂ SiMe ₂ :	$Kp_3 = 90 - 93^{\circ}C$
(IMe ₂ Si) ₂ SiMeI:	$Kp_{0,1} = 70^{\circ}C.$

(FMe₂Si)₂SiMe₂ und (FMe₂Si)₂SiMeF

5 g (15 mmol) (BrMe₂Si)₂SiMe₂ bzw. (BrMe₂Si)₂SiMeBr (12,5 mmol), gelöst in 10 ml trockenem Hexachlorbutadien, werden zu etwa 5 g ZnF₂, suspendiert in 20 ml C₄Cl₆, langsam zugetropft. Die

in etwa 80% igen Ausbeuten isolierbaren Fluorderivate werden aus dem Reaktionsgemisch destillativ entfernt.

 $(FMe_2Si)_2SiMe_2: Kp_{36} = 68 - 72^{\circ}C$ $(FMe_2Si)_2SiMeF: Kp_{47} = 69 - 70^{\circ}C.$

(MeOMe₂Si)₂SiMe₂ und (MeOMe₂Si)₂SiMeOMe

5 g (15 mmol) (BrMe₂Si)₂SiMe₂ bzw. (BrMe₂Si)₂SiMeBr (12,5 mmol) werden in etwa 300 ml trockenem Diethylether gelöst und bein -80° C, langsam mit einer Lösung von 0,96 g (30 mmol) MeOH und 3,0 g (30 mmol) N(C₂H₅)₃ [0,8 g (25 mmol) MeOH und 2,5 g (25 mmol) N (C₂H₅)₃ für Br₃Si₃Me₅] in etwa 50 ml Et₂O versetzt. Man rührt noch über Nacht, filtriert und fraktioniert i.V. Die Ausbeuten liegen bei 60–80%.

 $(MeOMe_2Si)_2SiMe_2: Kp_{19} = 92°C$ $(MeOMe_2Si)_2SiMeOMe: Kp_5 = 74°C.$

(HMe₂Si)₂SiMe₂ und (HMe₂Si)₂SiMeH

Die Hydrierung von $(ClMe_2Si)_2SiMe_2$ und $(ClMe_2Si)_2SiMeCl mit LiAlH_4$ unter Standardbedingungen liefert in praktisch quantitativen Ausbeuten $(HMe_2Si)_2SiMeH (Kp_{55} = 70^{\circ}C)$ und $(HMe_2Si)_2SiMe_2 (Kp_{100} = 80^{\circ}C)$ ist in der Literatur bereits beschrieben [12].

Apparatives

Die IR-Spektren wurden an einem Perkin-Elmer 883-Spektrometer registriert (Reinsubstanzen als Film zwischen CsBr-Scheiben). Die FT-Raman-Messungen wurden am IFS 66 mit Raman-Modul (Firma Bruker) durchgeführt. Zur Anregung diente hier ein Nd-YAG Laser (1046 Å, LP 100-200 mW). Die Substanzen wurden für die Messungen in 1 mm Kapillarröhrchen eindestilliert bzw. kondensiert.

Die ²⁹Si-Kernresonanzspektren wurden mit einem Bruker MSL 300 Spektrometer (59, 627 MHz für ²⁹Si) ausgerüstet mit einem ²⁹Si-Selektiv-Probenkopf (10 mm) registriert. Alle Proben wurden in C₆D₆ als Lösungsmittel gemessen. Die Konzentrationen lagen bei *ca* 50%. Die Meßtemperatur war in allen Fällen 22°C. Für die Messung der SiSi-Kopplungskonstanten wurde die INEPT-INADEQUATE-Pulsfolge [13] verwendet.

KERNRESONANZSPEKTREN

Tabelle 2 faßt die gemessenen chemischen Verschiebungen δ (²⁹Si) (an Protonenspektren bestand im Rahmen dieser Arbeit kein Interesse) und SiSi-Kopplungskonstanten aller Trisilane zusammen. Die ²⁹Si-Signale des zentralen Si-Atoms [δ (SiMe₂)] der Derivate (XMe₂Si)₂SiMe₂ werden durch zunehmende Elektronegativität der Substituenten X zu höherem Feld verschoben. Nach ERNST *et al.* [14] gleicht die Abhängigkeit der chemischen Verschiebung von der Ladung des betrachteten Si-Atoms einer Glockenkurve. Wenn die Summe der Elektronegativitäten (Σ EN) der Substituenten etwa den Wert 10,8 erreicht, so entspricht dies dem Scheitelpunkt der Kurve. Sowohl eine Verminderung als auch eine Erhöhung der Substituentenelektronegativitäten sollten dann zusätzliche Abschirmung bewirken.

Für das mittlere Si-Atom der Hexamethylderivate $(XMe_2Si)_2SiMe_2$ liegt ΣEN aber sicher unter 10, so daß nach dem von Ernst gefundenen Zusammenhang zunehmende Elektronegativität von X (und damit zunehmende EN der Me₂XSi-Gruppe) einen entschirmenden Effekt ausüben sollte. Offenbar spielen hier Anisotropieeffekte (obwohl die Anisotropieparameter für den ²⁹Si-Kern im Vergleich zum ¹³C-Isotop klein sind [15]) und Änderung der SiSiSi-Bindungswinkel eine Rolle.

Der Trend für die SiMeX-Gruppe verläuft parallel hierzu, wie ein Vergleich zwischen (XMe₂Si)₂SiMeX (Tabelle 2) und der Heptamethylverbindungen (Me₃Si)₂SiMex [16]

x	ð(SiMe ₂)	$\delta(SiMe_2X)$	¹ J (SiSi)	δ(SiMe ₂)	$\delta(\text{SiMe}_2 X)$	¹ J(SiSi)
	(XMe ₂ Si) ₂ SiMe ₂		(7	KMe2Si)2SiMeX	<
н	- 47,5	- 36,8	72,3*	-76,4	- 40.2	70.4†
F	- 53,7	+ 36,9	85,9‡	+24,2	+ 30.2	96.88
Cl	- 43,9	25,0	81,5	-0,3	+ 19,8	89.3
Br	- 42,6	19,64	78,7	-11.0	+ 11,9	84.4
I	-41,6	-1,8	74,6	- 38,9	-12,7	76.8
OMe	- 53,7	+ 18,7	85,1	+6,5	+ 14.0	94.9
Ph	- 47,9	- 18,5	72,7	- 46,4	- 18,6	72,1

 Tabelle 2. Chemische Verschiebungen (ppm gegen TMS) und Kopplungskonstanten

 (Hz) der Hexamethyl- und Pentamethyltrisilane (XMe₂Si)₂SiMe₂ und (XMe₂Si)₂SiMeX

 $^{*1}J(SiH) = 173,6.$

 \dagger SiMeH: ${}^{1}J(SiH) = 168,6$; SiMe₂H: ${}^{1}J(SiH) = 180,7$.

 $\pm {}^{1}J(SiF) = 309,9; {}^{2}J(SiF) = 25,1; {}^{3}J(SiF) = 3,45.$

§ SiMeF: ${}^{1}J(SiF) = 322,2; {}^{2}J(SiF) = 33,2.$

 $SiMe_2F$: ¹J(SiF) = 319,3; ²J(SiF) = 25,6; ³J(SiF) = 2,7.

zeigt. Hier führt der Ersatz zweier Methylgruppen durch X ebenfalls zu einer erhöhten Abschirmung des zentralen Si-Atoms. Vergleicht man aber δ (SiMe₂) von Oktamethyltrisilan (-487 ppm) mit den Werten für die Hexamethylderivate, so ist das Verhalten gerade entgegengesetzt. Der Ersatz zweier äußerer Methylgruppen des Si₃Me₈ durch elektronegative Substituenten X verschiebt δ (SiMe₂) zu niedrigerem Feld (ausgenommen X = F und OMe. In diesen Fällen tritt Abschirmung ein).

Wie eine Gegenüberstellung der chemischen Verschiebungen der SiMe₂X-Endgruppen für XMe₂SiSiMe₂SiMe₃, (XMe₂Si)₂SiMe₂ und (XMe₂Si)₃SiMeX zeigt, wirken sich Substituenteneinflüsse auch über zwei SiSi-Bindungen hinweg deutlich aus (bis zu 4 ppm). Ein empirisches Modell zur Vorhersage der ²⁹Si-Verschiebungen von Polysilanen hat dieser Tatsache Rechnung zu tragen. Wir hoffen, durch Vermessung weiterer Trisilanderivate [über die Pentaund Tetramethylverbindungen X₃SiSiMe₂SiMe₃ und (XMe₂Si)₂SiX₂ wird in Kürze berichtet werden [17]] genügend Datenmaterial zusammenzutragen, um ein derartiges Modell (etwa auf Basis von gegenseitigen Wechselwirkungsparametern der Substituenten) entwickeln zu können. Es wäre für präparative Fragestellungen von großem Interesse.

Die gemessenen SiSi-Kopplungskonstanten (Tabelle 2) lassen klar erkennen, daß elektronegative Substituenten J(SiSi) erhöhen. Trägt man J gegen die Summe der Elektronegativitäten der Substituenten (ΣEN) an einer SiSi-Bindung auf (Abb. 1; die Elektronegativität der SiMe₂X-Endgruppe wird näherungsweise als konstant angenommen und ist in ΣEN nicht berücksichtigt), so ergibt sich ein weitgehend linearer Zusammenhang. Die Verwendung verschiedener Elektronegativitätsskalen ändert nur

Abb. 1. Abhängigkeit der SiSi-Kopplungskonstante von der Summe der Elektronegativitäten an der SiSi-Bindung: (●) Hexamethyltrisilane (XMe₂Si)₂SiMe₂; (■) Pentamethyltrisilane (XMe₂Si)₂SiMeX.

Details, nichts aber am grundsätzlichen Bild. Erwähnenswert ist freilich, daß die Kopplungskonstanten der Phenylderivate niedriger liegen, als es der Gruppenelektronegativität C₆H₅-Substituenten des entspricht. Gegenüber Polysilanylgerüsten weist der Phenylsubstituent offenbar eine geringere Elektronegativität auf als an Monosilanen ermittelt. Ähnliches gilt auch für die Trifluorsulfonsäuregruppe [3].

SCHWINGUNGSSPEKTREN

Legt man den 1,3-Hexamethyltrisilanen die höchstmögliche C_{2v} -Symmetrie zugrunde, so verteilen sich die Grundschwingungen (ohne Torsionen) nach:

$$\Gamma_{C_{2n}} = 22A_1 + 15A_2 + 18B_1 + 18B_2$$

auf die einzelnen irreduziblen Darstellungen. Dies gilt für einatomige Substituenten X, für das Phenyl- und Methoxyderivat erhöht sich die Anzahl der Schwingungen.

Die höchstmögliche Symmetrie der Pentamethylderivate (XMe₂Si)₂SiMeX ist C, mit folgender Verteilung der Grundschwingungen (wiederum ohne die Torsionskoordinaten)

$$\Gamma_{C} = 35A' + 30A''$$
.

Von wenigen Ausnahmen (z.B. ν SiH oder ν CO) abgesehen, liegen oberhalb von 1000 cm⁻¹ nur weitgehend lagekonstante Schwingungen der Methylgruppen (ν_s , ν_{as} , δ_s , δ_{as} CH₃), an denen im Rahmen dieser Arbeit kein Interesse besteht. Die Tabellen 3 und 4 geben daher die gemessenen Infrarot- und Ramanspektren unterhalb 1000 cm⁻¹ wieder. Die Spektren sind mit Hilfe von Normalkoordinatenanalysen (siehe Abschnitt NCA) zugeordnet. Im Bereich der Gerüstdeformationen erfolgte die Zuordnung nur summarisch, da sich hier die potentielle Energie meist gleichmäßig über mehrere Koordinaten erstreckt. Bereits kleine Änderungen in einzelnen Kraftkonstanten können zur Zuordnungsumkehr führen.

Läßt man die oberhalb 1200 cm⁻¹ liegenden praktisch lagekonstanten Schwingungen ν_{as} , ν_s , δ_{as} und δ_s außer Betracht (sie werden im Rahmen der NCA nach einem von WILSON [19] angegebenen Verfahren abgespalten), so reduzieren sich die Dimensionen der irreduziblen Darstellungen beträchtlich (X einatomig)

(XMe₂Si)₂SiMe₂:
$$\Gamma_{C_{2v}} = 12A_1 + 7A_2 + 8B_1 + 10B_2$$

(XMe₂Si)₂SiMeX: $\Gamma_{C_4} = 19A' + 16A''$.

Hierzu kommen für die Phenyl- und Methoxyderivate innere Schwingungen der Substituenten.

Die Spektren aller Trisilane lassen sich zwanglos in mehrere Bereiche unterteilen und sind aufgrund zahlreicher zufälliger Entartungen relativ linienarm.

 ρ CH₂-Schwingungen liegen lagekonstant als sehr intensive IR-Banden zwischen 860 und 760 cm⁻¹. Sie weisen nur sehr geringe Intensitäten in den Ramanspektren auf. Knapp darüber (~880 und 930 cm⁻¹) liegen SiH-Deformationsschwingungen der Wasserstofftrisilane. Sind sie noch deutlich vom Bereich der ρ CH₃—Schwingungen abgegrenzt, so gilt dies für die SiF-Valenzschwingungen der Fluorderivate nicht mehr. Sie können daher nur mit Hilfe der NCA nach 850–860 cm⁻¹ zugeordnet werden.

Zum längerwelligen Bereich schließen sich die SiC-Valenzschwingungen ($\nu_{as}SiC_2$: 750–700 cm⁻¹; ν_sSiC_2 : 675–630 cm⁻¹), ebenfals mit weitgehendem Gruppenschwingungscharakter, an. Sie verdecken die SiO-Valenzschwingungen der Methoxyderivate und erschweren so die Zuordnung. Allgemein kann gesagt werden, daß sich die einzelnen Verbindungen im Gebiet der ρCH_3 , ν_s und $\nu_{as}SiC_2$ —Schwingungen kaum unterscheiden.

Dies gilt nicht mehr für den langwellig folgenden Bereich der SiX (X = Cl, Br, I, Ph) und SiSi-Valenzschwingungen (500-300 cm⁻¹). Er ist gekennzeichnet durch kinetische Kopplungseffekte zwischen SiSi- und SiX-Valenzkoordinaten (siehe Abschnitt NCA)

			Tabelle 3.	Infrarot- ui	nd Ramansp	sektren (<	950 сm ⁻¹) Н	examethyltn	ısılan (XMe ₂ S	1)2SiMe2 und 1	hre Zuordni	Bui		
(HMe ₂ S IR(fl)	si) ₂ SiMe ₂ Ra(fl)	(FMe ₂ Si IR(ft)	() ₂ SiMe ₂ Ra(fl)	(CIMe ₂ S IR(fl)	ii) ₂ SiMe ₂ Ra(fl)	(BrMe ₂ IR(fl)	si) ₂ SiMe ₂ Ra(f)	(IMe ₂ Si IR(fl)	i) ₂ SiMe ₂ Ra(fl)	(PhMe ₂ Si) ₁ IR(fi)	SiMe ₂ * Ra(fl)	(OMeMe ₂ ' IR(fl)	Si) ₂ SiMe ₂ Ra(fl)	Zuordnung
										1028 m 998 m	1030 m 999 s 986 m	1180 vs 1080 vvs, b	1087 w	POCH POCH
932 881 vs 838 s 794 s	885 w 841 vvw	852 vs, b		836 vs	845 vvw	835 vs	845 vvw	837 s	840 vvw 797 w	831 s 781 s	845 vw	832 vs, b	837 vw }	ðSiH ðSiH þCH,
734 s	738 w	776 vs, b 730 w, sh	759 w	781 vs 730 mw	772 m	768 vs 733 s	209 vs	735 m	767 w	730 s	735 w 735 w	770 vs, b 720 s	768 w) 738 vs > 721 w }	v_SiC.
s 869 s 454	m (69) 667 °	694 m	687 w 668 s	w 869 ш 699	695 w 675 s	697 s 669 vs	695 w 673 s	696 ms 663 vs	695 w 670 m	698 vs	688 w	80 vs	684 m	
635 w 620 mw	649 s 621 m	654 vs 636 s 620 m, sh	653 mv 640 w 621 m	645 m 623 mw	645 w 624 w	644 vs 636 s	644 w	643 ms 621 w	642 vw 622 vw	646 m 635 w 618	657 m 635 w 630 mm	635 vs 635 vs	658 s 637 w 625 w	ν₅SiC₂
596 m 449 m	451 w	478 w 461 w	456 vw	510 sh	Ş	469 vs	469 ш	475 sh 462 s	485 vvw 462 w	483 m	483 w	491 s 455 w, sh	486 w 450 wv, b	ðSiH v"SiSi ₂
2092 s	2092 s	852 vs, b		429 ms 499 vs 485 ch	500 vvv 500 w vv	417 vs 365 vs	418 w 358 vu	371 s 371 s 371 s	323 ш сћ 123 ш сћ	367 m 345 v. sh	360 sh 245 m	720 s	721 w	vSiX
380 vvw 370 vvw	381 s 370 vs	394 m	394 s	375 w 368 sh	375 vs 358 sh		342 vs	322 vs 322 vs 310 sh	323 m, sh 310 s	471 m 455 sh	472 w 456 w	396 m 375 w, sh	396 m ~ 375 vw, sh	v _r SiSi ₂
		357 w 322 vw	350 vvw 325 vw 292 w					280 vvw		422 w 415 w, sh 295 w	425 sh 415 mw 296 w		300 w	× -
	253 m	276 s 260 s	278 vw 259 w		254 ш		246 w		238 w 777 m		250 w		289 w 120 ch h	Sisic Sisic
	200 sh 176 s		195 sh 171 s		212 m 178 sh		21 197 197 197 197 197 197 197 197 197 19		185 s 165 s		81 189 ms		182 sh 168 s 168 s	ocsic 0
	125 m		107 w, b		107 w		95 w		1678 1618		120 s 88 vs		109 w	
	82 w, sh		83 w, b								1		•	

4

132

KARLA SCHENZEL UND KARL HASSLER

* Benennung der inneren Phenylschwingungen nach WHIFFEN [18].

	Zuordnung	boCH ₅ b b cOCH ₅ b b b b b b b b b b b b b b b b b b b	11100	PCH,	v_siC	v,SiC ₂	θSiH	y, vSiX	v ≞ SiSi₂	vsiX	v _s SiSi ₂		ðSiSiX ðXSiC ðSISIX	ACSIC	
ii)-SiMeOMe	/_ Ra(fl)	1160 vw 1090 mw	830 w]	768 m		666 s 630 s	~ ~	~~	500 w, sh 478 m	721 m	768 m 396 vs	329 w	220 sh 189 s	163 vs	100 m, sh
dnung (OMeMe _n S	IR(fl)	1170 vs 1080 vs, b	834 s	769 vs, b	721 m 680 w	629 s			481 m	726 s	769 vs, b 399 mw	330 ms 310 m			
Ind thre Zuor	Ra(fl)	1029 m 999 vs 986 w	863 vvw	808 vvw	726 s 690 m	670 s 646 s 670 s	\$ 070	476 w	500 m	448 m	343 m 329 m	293 w	255 vw 214 vs, sh 196 m	170 vw	87 ш, b
r Xəmicç(icçi (PhMe.Si	IR(n)	1028 m 998 m	834 s	814 s 775 s	735 vv 80	670 sh 646 ms 618 ms	M OTO	489 w 467 s	506 w	380 sh	369 ш				
silane (Ame i),SiMel	Ra(fl)		845 vvw	805 vvw 771 w	731 s 696 m	663 m			478 vw)	419 w <i>f</i>	322 sh 308 s	293 s	228 w 185 m	153 m	94 w 9 w
Intametuyitri (IMe ₂ 5	IR(f)		848 s	. 807 s 781 s	735 w 702 s	664 s			495 w, sh 478 ш	421 m 400 sh	324 s 310 sh				
si).SiMeBr	Ra(fl)		847 vw	806 vw 773 w	700 m	667 m			488 w	448 w 380 w	370 sh 332 vs 321 s		240 w 231 w 199 m	155 m	м сі і Ш Ш Ш
(BrMe)	IR(f)		846 vs	810 s 778 vs	735 w 703 m	s 600			489 m	450 m 378 vs	370 vs 332 w 320 w				
i).SiMeCl	Ra(fl)		845 mw	774 w	704 m	671 ш			510 m	510 m 476 m	363 vs		250 w 230 w 211 m	163 ms	~ 100 w, sh
(CIMe.S	IR(ff)		844 vs	812 w 778 vs	736 w 705 s	672 vs			520 vs	520 vs 477 vs	443 s 385 w, sh 364 m				
I addie 4. J	Ra(f)		862 vw	780 vw, sh	M 10/	691 s 652 vs			479 w	862 vw	396 vs	299 w 266 w	220 w	180 sh 166 m	100 mw 80 w, sh
(FMe.	IR(f)		860 s	810 vs 780 vs 780 vs	13 CO/ N M (2)	691 m 652 s			479 m	860 s	397 ш	295 s 765 s	e 007		
i).SiMeH	Ra(fl)		A 000	MAA 040	701 m	E E 669	ш 170		448 mw	2099 s	388 sh 379 m		253 w 234 w	171 m	107 mw, l
(HMe.S	IR(f)	933 m •••	x 028 x x	2.92 S 788 S	701 s	672 s 649 s 617 s	01 / S 595 s		456 w	2098 vs	390 w, sh 379 mw				

(XMe₂Si)₂SiMe₂ und (XMe₂Si)₂SiMeX

133

und durch Aufspaltungen einzelner Linien wegen des Vorliegens verschiedener Rotamerer. So tritt etwa $v_s SiSi_2$ bei fast allen Verbindungen verdoppelt auf (typische Aufspaltung 10–25 cm⁻¹), ein deutlicher Hinweis auf eine gegenüber kT nicht vernachlässigbare Rotationsbarrierre. Daß es sich bei den Bandenverdoppelungen nicht um Verunreinigungen handelt, geht eindeutig aus den NMR-Spektren hervor. Wir planen die Untersuchung der Rotamerengleichgewichte einzelner ausgewählter Verbindungen mittels Tieftemperatur Raman-Spektroskopie und force field Berechnungen (MM2).

Der Bereich der Gerüstdeformationsschwingungen ($<300 \text{ cm}^{-1}$) ist geprägt durch zufällige Entartung sehr vieler Linien (zumindest innerhalb des Auflösungsvermögens des Raman-Spektrometers; FIR-Spektren wurden nicht angefertigt) und daher recht linienarm. Eine Zuordnung ist selbst mit den Methoden der NCA (siehe nächster Abschnitt) nicht immer möglich.

Abschließend sei noch darauf hingeweisen, daß wegen der Fülle des vorliegenden Datenmaterials nicht auf jedes Zuordnungsproblem einzeln eingegangen werden kann. Nähere Informationen können jederzeit von den Autoren angefordert werden.

NORMALKOORDINATENANALYSE (NCA)

Die Schwingungsberechnungen wurden nach der FG-Methode [19] durchgeführt, wobei die Geometrie des Oktamethyltrisilans [20] für das Si_3C_5 -bzw. Si_3C_6 -Gerüst zugrunde gelegt werden. An den Kohlenstoffatomen wurde Tetraedergeometrie angenommen. Die verwendeten Bindungslängen zum Substituenten X waren (pm):

$$d(\text{SiF}) = 154$$
, $d(\text{SiCl}) = 201$, $d(\text{SiBr}) = 214$, $d(\text{SiI}) = 243$
 $d(\text{SiO}) = 164$, $d(\text{SiH}) = 234$, $d(\text{SiC}_{\text{Phenyl}}) = 190$.

d(CO) der methoxylierten Derivate wurde zu 141 pm, der SiOC-Winkel zu 120° gewählt. Für die Phenylgruppe verwendeten wir ein einfaches Dreimassenmodell [21].

Bei der Aufstellung der F-Matrizen konnten wir auf unsere Ergebnisse an $(Me_3Si)_2SiX_2$ [4], $(Me_3Si)_2SiMeX$ [4], Si_3Me_8 [2], $XMe_2SiSiMe_2SiMe_3$ [1] und $X_2MeSiSiMe_2SiMe_3$ [3] zurückgreifen und ganze Kraftkonstantenblöcke nach dem Prinzip des lokalen Symmetriekraftfeldes übertragen. Die dabei getroffenen Näherungen und Vorgangsweisen sind z.B. in [4] beschrieben, so daß hier auf eine detaillierte Erläuterung verzichtet werden kann.

Tabelle 5 gibt die beobachteten und berechneten Frequenzen der Hexamethyltrisilane, Tabelle 6 jene der Pentamethyltrisilane wieder. Die berechneten Valenzkraftkonstanten finden sich in Tablle 7. Innerhalb der Genauigkeit der NCA konnten keine Unterschiede in den SiC-Kraftkonstanten an den einzelnen Si-Atomen festgestellt werden, so daß f(SiC) über alle Rassen gemittelt wurde.

Die gefundenen SiSi-Valenzkraftkonstanten sind für die hier betrachteten Trisilane mit relativ großen Unsicherheiten behaftet (etwa $\pm 10\%$), die nicht zuletzt auf das Vorliegen verschiedener Rotamerer zurückgehen. So sind für die Hexamethyltrisilane XMe₂SiSiMe₂SiMe₂X vier spektroskopisch unterscheidbare Konformationen möglich, die alle zu verschiedenen Punktgruppen gehören (von der inneren Rotation der Methylgruppen sei hier abgesehen). Die vier Konformationen lassen sich durch die Torsionswinkel an den zwei SiSi-Bindungen unterscheiden (Tabelle 8). Über ihre energetische Abfolge und Barrieren für die gegenseitige Umwandlung liegen keinerlei experimentelle Daten vor, so daß wir die Normalkoordinatenanalyse auf das Konformer mit der höchstmöglichen Symmetrie beschränkten. Für die Hexamethyltrisilane entspricht die Symmetrie C_{2v} (Anti-Anti-Konformation) einer ebenen, W-förmigen Anordnung der Atome XSiSiSiX. Bei den Pentamethylderivaten sind grundsätzlich sechs Konformere spektroskopisch unterscheidbar (Tabelle 8).

Die Bezeichnung A (anti) und G (gauche) bezieht sich hier auf die Position der vicinalen X-Substituenten, das Vorzeichen gibt den Torsionswinkel (≤ 0) an. Auch hier liegen keine experimentellen Daten über die energetische Reihenfolge der Konformeren vor, so daß wir (weitgehend willkürlich) das G+G+-Rotamere der NCA zugrunde

						\oo		T IND (STICH				, с, с,	Dr, 1, rn, O	(SIM)	
		(Me2HSi	i) ₂ SiMe ₂	(Me ₂ FSi	i)2SiMe2	(Me ₂ CISi) ₂ SiMe ₂	(Me ₂ BrSi	i) ₂ SiMe ₂	(Me ₂ ISi)	2SiMe2	(Me ₂ PhSi)	2.SiMe2	(Me ₂ MeOS	ii) ₂ SiMe ₂
Schu	gungui	V beed.	Vher.	V beob.	Vber.	V boub.	V _{ber} .	Vbeeb.	Plber.	Pleob.	Vber.	Vbeob.	Vber.	Vbcob.	Vber.
A,	v,SiC ₂	069	685	668	672	675	680	673	677	670	673	889	169	658	632
	δ ₅ SiC ₂	200	200	195	200	178	188	182	169	150	153	171	159	168	193
	v,Si C ₂	649	639	653	654	645	666	4 9	663	670	662	657	646	684	685
	ðSiSiC	263	264	259	254	254	270	1	270	280	269	250	269		262
	ySiSiC	1	274	278	269	254	232	233	214	227	214	250	234	220	244
	vSiX	2092	2094	852	880	500	501	418	441	399	416	34S	352	721	713
	ðSiSiX	596	601	171	175	107	123	95	8	20	73	189	181	I	22
	v,SiSi2	370	358	394	384	358	369	342	346	310	315	456	454	375	6 6
	δSiSiSi	8	74	83	8	l	61	1	49	1	37	I	65	I	56
A ₂	rsiC	176	158	171	156	161	152	153	148	150	144	171	156	168	156
	v_SiC	738	745	730	732	730	731	733	731	735	730	735	731	122	728
	δSiSiC	200	199	195	<u>1</u> 2	212	218	197	208	227	204	250	261		266
	ðCSiX	885	886	278	270	178	189	182	183	185	180	189	<u>1</u> 8	182	194
â	v_SiC	734	748	730	726	730	725	733	725	735	724	735	725	721	22
	psiC,	125	112	107	109	107	107	95	106	91	105	120	108	I	60
	v SiC	869	712	730	748	730	748	733	748	735	747	755	748	738	748
	ðSiSiC	233	240	195	219	178	192	182	176	150	167	215	222	220	220
	ACSIX	932	9 43	278	273	254	241	233	238	238	236	250	264	I	269
Ŕ	ySiC ₂	200	219	195	184	170	170	153	157	150	145	120	147	168	169
	^,Si C ₂	667	668	653	645	675	674	673	668	670	665	688	688	684	670
	SSISIC	253	265	259	248	212	229	233	215	227	207	250	237	220	727
	vsisic	176	184	171	162		134	95	104	2	85	189	180	ł	105
	√SiX	2092	2094	852	878	430	413	358	346	323	314	360	373	721	735
	ðSiSiX	596	603	325	301	1	286	I	280	274	273	296	294	220	239
	v SiSi ₂	451	447	456	459	510	518	4 69	482	485	484	483	497	486	476

Tabelle 5. Berechnete und beobachtete Grundschwingungen (cm⁻¹, ohne ρ CH₃) der Hexamethyltrisilane (Me-XSI). SiMe₂ (X = H. F. Cl. Br. 1 Ph. OMe)

SA(A) 50:1-J

(XMe₂Si)₂SiMe₂ und (XMe₂Si)₂SiMeX

135

	L	abelle 6. B	kerechnete	und beoba	ichtete Gn	undschwing	ungen (cm ⁻¹ ,	ohne p-CH ₃)	der Pentamet	thyltrisilane (M	le ₂ XSi) ₂ SiMeX	(X=H, F, C	l, Br, I, Ph, (OMc)	
		(Me ₂ HSi)	² SiMeH	(Me ₂ FSi)	2. SiMeF	(Me ₂ CISi)	2SiMeCl	(Me ₂ BrSi)	2SiMeBr	(Me ₂ ISi)	2SiMeI	(Me ₂ PhSi	2SiMePh	(Me ₂ MeOSi)	2SiMeOMe
Sch	gunguiwu	Vbeob.	$\mathcal{V}_{\mathrm{ber.}}$	Vbeub.	Vber.	V beat.	Vber.	Pheob.	V _{ber.}	Vbeob.	V _{ber.}	Vbeob.	ν_{ber}	Vheab.	$\nu_{\rm ber.}$
¥	vSiC	701	706	691	692	704	716	700	713	969	712	131	715	999	678
	vSiX	2098	2098	862	896	476	497	448	442	419	419	448	433	721	720
	δCSISi	107	111	100	86	I	11	I	61	I	37	I	118	100	112
	δSiSiX	590	563	100	121	100	108	100	101	2	8	170	177	100	8
	v _* SiC,	753	731	730	729	736	733	735	731	735	730	735	733	721	727
	v.SiC,	649	099	652	642	119	675	667	699	663	666	670	662	630	643
	SiSiC	253	262	265	257	250	250	240	246	228	245	255	262	1	264
	δSiSiC	234	222	220	219	211	202	199	200	185	179	255	244	220	242
	δSiSiC	234	237	220	229	230	234	199	176	153	163	214	212	220	225
	ACSIX	933	<u>8</u>	299	278	163	186	155	159	153	145	170	178	I	274
	vSiX	2098	2098	862	884	510	506	380	410	1 00	371	476	462	768	E
	δSiSiX	290	645	180	181 18	131	124	100	88	0 8	72	87	8 6	189	181
	v,SiSi,	379	38	396	381	363	350	321	321	308	306	329	341	396 396	393
	ÓSiSiSi	I	73	I	66	1	61		48	1	54	1	2	8	<u>98</u>
٩,	δSiSiC	734	212	180	182	163	160	155	155	153	150	I	148	163	151
	δSiSiX	933	942	220	201	100	115	1	69	I	53	255	265	100	8
	v _* sic	701	708	730	728	736	727	735	727	735	726	735	727	726	121
	v_SiC ₂	677	650	652	641	672	693	699	682	664	678	646	<u>6</u> 46	629	6 9
	ðSiSiC	I	289	265	276	250	242	230	224	228	215	214	212	220	232
	ðSiSiC	171	157	299	303	230	220	211	199	185	187	255	263	I	262
	ðSiSiC	171	178	166	152	163	174	163	163	153	158	I	152	189	171
	δCSiX	886	881	166	163	131	141	131	121	94	109	9 <u>6</u> 1	178	100	8
	vSiX	2098	2098	860	885	443	427	370	356	324	329	369	380	769	767
	δSiSiX	I	695	265	270	I	288	ł	276	ł	265	293	299	I	270
	V _s SiSi ₂	448	4 5	479	499	510	540	488	503	478	492	500	509	478	460

of best-based tests $(m^{-1} \text{ observed})$ der Pentamethyltrisilane (Me.XSi)-SiMeX (X = H. F. Cl. Br. I. Ph. OMe) ź j, ĝ

KARLA SCHENZEL UND KARL HASSLER

				and the second se										
	Н	F	Cl	Br	I	Ph	OMe	Н	F	Cl	Br	I	Ph	OMe
			(XI	Me ₂ Si) ₂	SiMe ₂					(XM	le ₂ Si) ₂ S	SiMeX		
f(SiC)*	282	282	282	282	282	282	282	280	280	280	280	280	280	280
f(SiX)	251	460	215	160	120	310	380	252	460	215	160	120	310	388
f(SiSi)	160	170	170	165	160	160	170	160	170	170	160	160	160	170
f(SiSi/SiSi)	10	10	10	10	10	10	10	10	10	10	10	10	10	10
f(SiSi/SiX)	0	10	10	10	7	10	15	0	10	10	10	7	10	15

Tabelle 7. Berechnete Valenzkraftkonstanten (Nm⁻¹) der Hexa- und Pentamethyltrisilane

* Gemittelt über alle SiC-Schwingungen und Rassen.

legten. Es besitzt ebenfalls die W-förmige, ebene Anordung XSiSiSiX. Die experimentell gefundenen Bandenverdoppelungen im Bereich der SiSi-Schwingungen (die für die Chlor, Brom- und Iodderivate stark mit Si-Halogenschwingungen verkoppelt sind), zeigen sowohl für die Hexa- als auch für die Pentamethylderivate das Vorliegen zumindest zweier Konformerer an. Die Zuordnung der Valenzschwingungen zu den für die NCA gewählten Konformeren ist weitgehend willkürlich, so daß die berechneten SiSi- (und teilweise auch SiX-) Valenzkraftkonstanten mit größeren Fehlerbreiten als üblich behaftet sind. Wir werden aber über Tieftemperaturespektren und empirische Kraftfeldberechnungen in Kürze berichten [24] und hoffen, auf diese Weise die wichtigsten Konformeren identifizieren zu können.

Genauere Einzelheiten der NCA wie etwa Potentialenergieverteilungen oder die im wesentlichen von ähnlichen Trisilanen [1-4] unverändert übertragenen Winkeldeformationskraftkonstanten können jederzeit von den Autoren angefordert werden.

DISKUSSION

Die berechneten SiSi-Valenzkraftkonstanten liegen zwischen 160 und 170 N m⁻¹. Nach allen bisherigen Erfahrungen sollten sie mit zunehmender Elektronegativität der Substituenten X and deren Anzahl im Molekül zunehmen, wie dies für die Kopplungskonstanten auch klar beobachtet wird. Das Vorliegen mindestens zweier Konformerer bei allen hier behandelten Trisilanen und die dadurch bedingten Unsicherheiten in den Zuordnungen der SiSi- und SiX-Schwingungen reduzieren allerdings die erreichbare Genauigkeit für die SiSi-Kraftkonstanten beträchtlich. Es ist nicht klar, welchen Rotameren die beobachteten Schwingungen zuzuordnen sind.

Abbildung 2 zeigt den an einer großen Anzahl von Silanen gefundenen Zusammenhang zwischen SiSi-Kraftkonstanten und Kopplungskonstanten [4] und wie sich die hier behandelten Trisilane in diese Korrelation einfügen. Im Bereich großer SiSi-Kopplungskonstanten liegt noch vergleichsweise wenig Datenmaterial vor. Wir

 Tabelle 8.
 Spektroskopisch unterscheidbare Konformere* der Hexaund Pentamethyltrisilane

(XMe ₂ Si) ₂ SiN	Ae ₂	(XMe ₂ S	ii)SiMeX
Konformer	Punktgruppe	Konformere	Punktgruppe
AA	C _{2v}	AA	С,
AG	C_1	AG+	C_1
G-G-	C_2	AG-	C_1
G + G -	С,	G+G+	C_s
		G+G-	C_1
		G - G -	<i>C</i> ,

• Die Bezeichnungsweise für die einzelnen Konformeren wurde nach [22, 23] gewählt.

Abb. 2. Der an einer grösseren Anzahl von Silanen gefundene Zusammenhang zwischen SiSi-Kopplungskonstanten und Kraftkonstanten (f [Nm⁻¹]=0,64 J [Hz] + 115 [4]). (●) Werte für die in dieser Arbeit untersuchten Trisilane.

hoffen, das Informationsdefizit durch die geplante Vermessung der Tetramethyl- und Dimethyltrisilane (XMe₂Si)SiMe₂ und (X₃Si)₂SiMe₂ zu beseitigen.

LITERATUR

- [1] K. Hassler und G Bauer, Spektrochim. Acta 43A, 1325 (1987).
- [2] K. Hassler, Spectrochim. Acta 40A, 775 (1984).
- [3] K. Hassler und R. Neuböck, Spectrochim. Acta (im Druck).
- [4] K. Hassler, Spectrochim. Acta 41A, 729 (1985).
- [5] T. Veszpremi, L. Nyulaszi, G. Zsombok, J. Reffy und K. Hassler, Period. Polytechn., Acta Chem. Hung. 128, 293 (1991).
- [6] K. Kamienska-Trela, Spectrochim. Acta 36A, 239 (1979).
- [7] K. Hassler, E. Hengge, F. Schrank und M. Weidenbruch, Spectrochim. Acta 47A, 57 (1991).
- [8] W. Biffar und H. Nöth, Z. Naturforsch. 36b, 1509 (1981).
- [9] K. Schenzel und K. Hassler, in Vorbereitung.
- [10] vgl. z. B. E. Hengge und D. Kovar, J. Organomet. Chem. 125, C29 (1977).
- [11] M. Ishikawa, M. Kumada und H. Sakurai, J. Organomet. Chem. 23, 63 (1970).
- [12] K. Kumada, M. Ishikawa und S. Maeda, J. Organomet. Chem. 2, 478 (1964).
- [13] E. Hengge und F. Schrank, J. Organomet. Chem. 362, 11 (1989).
- [14] C. R. Ernst, L. Spialter, G. R. Buell und D. L. Wilhite, J. Am. Chem. Soc. 96, 5375 (1974).
- [15] M. G. Gibby, A. Pines und J. S. Waugh, J. Am. Chem. Soc. 94, 6231 (1972).
- [16] K. Hassler und M. Marsmann, unpublished.
- [17] K. Schenzel und K. Hassler, in Vorbereitung.
- [18] D. H. Whiffen, J. Chem. Soc., 1350 (1956).
- [19] E. B. Wilson, J. C. Decius und P. C. Cross, Molecular Vibrations. McGraw Hill, New York (1955).
- [20] A. Almenningen, F. Fjeldberg und E. Hengge, J. Molec. Struct. 112, 239 (1984).
- [21] H. J. Becher und F. Höfler, Spectrochim. Acta 25A, 1703 (1969).
- [22] J. Thorbjørnsrud, O. H. Ellestad, P. Klaboe, T. Torprimsen und D. H. Christensen, J. Molec. Struct. 17, 5 (1973).
- [23] P. E. Farup und R. Stølevik, Acta Chem. Scand. A28, 680 (1974).
- [24] K. Schenzel und K. Hassler, in Vorbereitung.

138