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Direct trapping of the intermediate, produced by anionic 

oxy-Cope rearrangement of (1R,4S,6S)-4-alkoxy-l-ethenyl-3-methyl-

6-(1-methylethenyl)-2-cyclohexen-l-ol, with ethyl bromoacetate 

gave ethyl [3S,7S,1(10)E,4Z]-3-alkoxy-6-oxo-13-nor-1(10),4-

germacradien-12-oate stereoselectively, which was converted into 

a natural (-)-4,5-cis-3g-hydroxygermacranolide.

A number of synthetic studies on germacranolides have been developed. 1) We 

have previously reported the synthesis of optically active [3R,6S,7S,1(10)E,4Z]-3-

methoxymethoxy-13-nor-1(10),4-germacradieno-12,6-lactone (1; a trans-lactone) from 

(-)-carvone (2) via a cis-hydroxy acid (3) using anionic oxy-Cope rearrangement as 

a key step reaction; this synthesis was exigent of an inversion of the asymmeric 

center at C-6 of 3 to give the trans-lactone (1).1a) [3S,6S,7S,1(10)E,4Z]-3-

Hydroxy-1(10),4,11(13)-germacratrieno-12,6-lactone [4a; (-)-4,5-cis-3$-
hydroxygemacranolide] had been isolated from Tanacetum tanacetioides.2) Its 
acetate (4b) and keto derivative (4c; hispanolide) had also been isolated from 
Leucanthe opsis pulverulanta.3) This paper deals with the stereo-controlled 
alkylation of cyclodecadienone derivatives to give, after reduction with NaBH4, 
trans-lactones (5a, 5b, and 5b') and the synthesis of naturally occurring 
heliangolide (4a) and its enantiomer (4a'). 

In the previous papers,la) a methoxymethoxy (MOMO) trienol (6a) derived from 
the trienediol (6b) was treated with KH and 18-crown-6 in THE to proceed the 
anionic oxy-Cope rearrangement; a cyclodecadienone (,V was obtained in 67% yield 
on quenching the intermediate with aqueous ammonium chloride. The ketone (7) was 
then treated with LDA to generate the 6(7)Z-enolate (8a), which was quenched with
ethyl bromoacetate to afford keto ester (9a) having 7a-H stereostructure; hydrol-

ysis of 9a followed by reduction with LiBH4 gave the cis-hydroxy acid (3).la) 
 The ten-membered ring intermediate initially formed by the anionic oxy-Cope 

rearrangement of 6a was considered to have a structure like 10a, a conformational 
isomer of 8a. When the intermediate generated from 6c by anionic oxy-Cope 

rearrangement on treatment with KN(TMS) 21b) in DME at 80 C was directly quenched

with ethyl bromoacetate at-78 C, a keto ester (Ila) which was clearly different 

from 9b4) on NMR spectral examination was obtained in 45% yield. This fact could 

be explained that lOb or an enolate, possessing the same conformational structure
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around the enolate part as 10b, was trapped with ethyl bromoacetate. 

Treatment of Ila with NaBH4 gave the trans-y-lactone (5a) stereospecifically. 

The structure of this lactone including the stereochemistry was confirmed by 400 

MHz 1H NMR as [3R,6R,7R,1(10)E,4Z]-3-benzyloxy-13-nor-1(10),4-germacradieno-12,6-

lactone (5a) with 7g-H. The stereoselectivity on the hydride reduction reaction 

of 6-keto derivatives (9a and Ila) could be explained as follows. That is, 

regardless of the orientation of substituents at C-7 position, conformation of 

these reactants (9a and Ila) would be fixed as A, in which the 3a-substituted 

group was oriented to equatorial; hydride attack to the carbon at C-6 of A took 

place preferentially from the less hindered outer side of the ten-membered ring to 

give 6a-H compounds (3 and 5a). 

 As the removal of the benzyl protecting group (H2/Pd-C; or TMSI/CCl4) of 5a 

was ineffective,5) the protective group of the hydroxyl group of 6b was changed 

from benzyl into t-butyldimethylsilyl (TBDMS) group. The t-butyldimethylsilyloxy 

trienol (6d), obtained from 6b by treatment with TBDMSCl and imidazole in DMF, was 

treated with 5 equivalent moles of KN(TMS)2 in DME followed by ethyl bromoacetate

to afford the corresponding cyclodecadiene derivative (llb) in 32% yield via the 

intermediate (10c). Reduction of llb with NaBH4 gave a lactone (5b) in 50% yield.

Exo-methylene group in the y-lactone moiety was introduced by the known 

method; 6) 5b was treated with LDA followed by HCHO (gas) to afford the 
hydroxymethyl derivative (12) in 47% yield, which was dehydrated with MsCl and 4-

dimethylaminopyridine in pyridine to give the a-methylene-y-lactone (13) in 45% 

yield. 

The t-butyldimethylsilyl group of 13 was smoothly deprotected by treatment 

with tetrabutylammonium fluoride to yield [3R,6R,7R,1(10)E,4Z]-3-hydroxy-

1(10),4,11(13)-germacratrieno-12,6-lactone (4a'), the enantiomer of natural 

lactone (4a), in 85% yield. The spectral data (IR, lH NMR, and MS) of synthetic 

4a' were identical with those of natural compound (4a). 

A compound having the same sign on optical rotation as that of natural 

product (4a) could be obtained starting from (+)-carvone (2') by the same 

procedures [2'-i-r6b'-6d'(10c')-.pllb'5b'12'-,-13'-4a] as described above; the overall 

yield of 4a from 6b' was 6%. The [a] value of our synthetic 4a (-53) was 

different from those (-80 2) and-18.1 3)) reported for natural compound (4a). 

The synthetic compound (4a) was converted into a MTPA ester with (+)-MTPACl [(R)-

(+)-c-methoxy-a-(trifluoromethyl)phenylacetyl chloride] to check the optical 

purity. The GC and GC-MS of the MTPA ester of 4a showed 88% e.e., which was 

almost identical with that of starting material, (+)-carvone (2v; 90% e.e.). 
Characterization of synthetic 4a, 5a, 5b' 6d', 9b, and Ila is as follows; 

4a: crystals, mp 153.5-154.5 C (hexane-ether); IR (KBr) 3480, 1730, and 1660 

cm 1, 1H NMR (CDCl3, 90 MHz) 6 1.71 (3H, d, J=1.5 Hz), 1.74 (3H, d, J=1.5 Hz), 

4.44 (1H, t, J=3 Hz), 5.10 (1H, br t, J=8 Hz), 5.16 (1H, dq, J=10.5 and 1.5 Hz), 

5.63 (1H, d, J=3 Hz), 5.75 (1H, dd, J=10.5 and 3 Hz), and 6.27 (1H, d, J=3 Hz); 

Cl5H200 3 (m/z 248.1442). 
5a: crystals, mp 88-89.5 C (ether); IR (KBr) 1775 and 1195cm 1; 1H NMR (CDCl3, 

400 MHz) 6 1.66 (3H, br s), 1.70 (3H, d, J=1.5 Hz), 4.03 (1H, t, J=6 Hz), 4.26 and
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4.66 (2H, ABq, J=11.6 Hz), 5.15 (1H, br), 5.40 (1H, dd, J=10 and 1.5 Hz), 5.63 

(1H, dd, J=10 and 3 Hz), and 7.33 (5H, m); C21H26O3 (m/z 326.1916). 

5,b': oil, IR (neat) 1775 and 1675cm-1, 1H NMR (CDCl3, 90 MHz) 6 0.0 (6H, s), 0.85 

(9H, s), 1.60 (3H, d, J=1.5 Hz), 1.62 (3H, s), 4.20 (1H, t, J=3 Hz), 5.00 (1H, br 

t, J=9 Hz), 5.10 (1H, dd, J=10.5 and 1.5 Hz), and 5.54 (1H, dd, J=10.5 and 3 Hz); 

C 20 H 34 0 3 Si (m/z 350.2243). 

-- 6d': oil, IR (neat) 3490cm-1; 1H NMR (CDCl3, 90 MHz) 6 0.0 (6H, s), 0.84 (9H, s), 

1.63 (3H, d, J=1.5 Hz), 1.69 (3H, d, J=1.5 Hz), 4.05 (1H, br t, J=6 Hz), 4.69 (1H, 

br d, J=1.5 Hz), 4.85-5.25 (4H, m), and 5.77 (1H, dd, J=18 and 10.5 Hz); 

Cl8H320 2Si (m/z 308.2186). 
9b: oil, IR (neat) 1730, 1675, and 1620cm 1; 1H NMR (90 MHz, CDCl3) S 1.23 (3H, 

t, J=7 Hz), 1.43 (3H, s), 1.83 (3H, s), 4.09 (2H, ABq, J=7 Hz), 4.47 (2H, s), 4.73 

(1H, dd, J=12 and 6 Hz), 5.01 (1H, t, J=7 Hz), and 6.30 (1H, br s); C23H30O4 (m/z 

370.2134). 

llla: oil, IR (neat) 1730, 1680, and 1630cm-1, 1H NMR (90 MHz, CDCl3) 6 1.27 (3H, 

t, J=7 Hz), 1.48 (3H, s), 1.87 (3H, s), 4.15 (2H, ABq, J=7 Hz), 4.50 (2H, s), 4.7-

5.2 (2H, m), and 6.13 (1H, br s); C23H30O4 (m/z 370.2102). 

The authors wish to thank Mr. Kazuhiro Matsushita of JEOL Co. Ltd. for the 

measurement of 400 MHz 1H NMR spectrum.
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