Synthesis of 6,9a-Diaryl-1,2,3,4,9,9a-hexahydropy-rimido[2,1-c][1,4]thiazines; A Correction of the Structure of 3,9-Diaryl-5,6,7,8-tetrahydro-2*H*-1,4,8-thiadiazecines

S. S. SANDHU, S. S. TANDON, Harjit SINGH*

Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India

In a previous communication we reported that the reaction of diphenacyl sulfides $2 (R = H, CH_3)$ with 1,2-diaminoethane (3, n=2) gave rise to 3,8-diaryl-2,5,6.7-tetrahydro-1,4,7-thiadiazonines and that the analogous reactions of 2 with 1,3-diaminopropane (3, n=3) gave 3,9-diaryl-5,6,7,8-tetrahydro-2H-1,4,8-thiadiazecines 1.

R=H.CH₂

A subsequent study of the 13 C-N.M.R. spectra of the product of the latter reactions has shown that the correct structure is that of the previously unknown 6.9a-diaryl-1,2,3,4,9,9a-hexahydropyrimido[2,1-c][1,4]thiazines 4 (R = H, CH₃).

This study of the ¹³C-N.M.R. data (Table) showed that, in addition to the expected 4 or 5 signals for sp³ hybridised carbon atoms for 1, R = H, CH₃, respectively a signal for an sp³ hydrised carbon atom was present at $\delta = 71.340$ and

Table. ¹³C-N.M.R. Data for 6,9a-Diaryl-1,2,3,4,9,9a-hexahydropyrimido[2,1-c][1,4]thiazines 4 (R = H, CH₃)

Chemical Shifts ^a δ [ppm]			Assignment
4 (R = H) ^h	$4 (R = CH_3)^c$		
	21.173 (q, J	= 50 Hz)	. CH ₃
25.225 (t, $J = 55 \text{ Hz}$)	25.358 (t, $J=$	= 57 Hz)	C-3
40.562 (t, $J = 72 \text{ Hz}$)	40.642 (t, $J =$	= 74 Hz)	C-2
41.831 (t, $J = 68 \text{ Hz}$)	41.880 (t, $J=$	=74 Hz)	C-4
44.977 (t, $J = 73 \text{ Hz}$)	44.920 (t, $J=$	=75 Hz)	C-9
71.340 (s)	71.240 (s)		C-9a
93.760 (d, $J = 111 \text{ Hz}$)	92.817 (d. J.	= 111 Hz)	C-7
127.340 127.670	127,476 127,600	,	
127.920 unresolved 128.630	129.150 129.708 unres	olved	C_{arom}
129.130 <i>)</i> 140.380)	127 (024)		
142.945 \((s)	137.024		
146.224	137,365		0.4 10 1 11 11
. 10.221	137.613 (s)		C-6 and C _{arom} devoid of H
	140.062		
	146.262 J		

^a The multiplicity in the off-resonance proton decoupled spectra is given in brackets.

^b Solution in CDCl₃.

^c Solution in CDCl₃.

71.240 ppm, respectively, which remained unsplit in the off-resonance proton decoupled spectra. This signal is now assigned to C-9a in structure 4. The downfield shift of this signal is probably due to the proximity of the two nitrogen atoms² in 4. This observation together with the fact that the aryl carbon atoms linked to the ring system appear as separate signals as opposed to a single signal for the 3,8-diaryl-2,5,6,7-tetrahydro-1,4,7-thiadiazonines support the structure 4 and rule out structure 1.

The formation of the bicyclic system 4 as opposed to the 10-membered monocyclic system 1 is a case of preferred³ transannular $HN\rightarrow C$ N interaction at 1,6-positions.

6.9a-Diaryl-1,2,3,4,9,9a-hexahydropyrimido[2,1-c][1,4] thiazines 4 (R = H, CH₃):

For procedure, yield, m.p., microanalytical, and ${}^{1}H$ -N.M.R. data see details for product 5 (R = H, CH₃) in Ref. 1 .

We thank the UGC, New Delhi for financial assistance and Dr. K. L. Loening, Chemical Abstracts Service for naming the structure 4.

Received: April 17, 1979

¹ S. S. Sandhu, S. S. Tandon, H. Singh, Synthesis 1979, 46.

² An sp³ hybridised carbon atom flanked by three nitrogen atoms has been reported at 72.65 ppm, H. Singh, P. Singh, Chem. Ind. (London) 1978, 126.

³ Such observations have been recorded in the case of N→C O transannular interactions; W. L. F. Armarego, Stereochemistry of Heterocyclic Compounds, Part 1, Nitrogen Heterocycles, John Wiley & Sons, New York, 1977, p. 315.