Steroids 76 (2011) 324-330

Contents lists available at ScienceDirect

Steroids

journal homepage: www.elsevier.com/locate/steroids

Short communication

Synthesis of 12-oxa, 12-aza and 12-thia cholanetriols

Malika Ibrahim-Ouali^{a,*}, Khalil Hamze^a, Luc Rocheblave^b

^a Institut des Sciences Moléculaires de Marseille UMR 6263 CNRS, Université d'Aix Marseille III, Faculté des Sciences et Techniques de Saint Jérôme, Avenue Escadrille Normandie Niémen 13397 Marseille Cedex 20 France

^b Université de Lyon, Université Lyon 1, ISPB-Faculté de Pharmacie, INSERM U863, IFR 62, F-69373 Lyon Cedex 08, France

ARTICLE INFO

ABSTRACT

Article history Received 15 September 2010 Received in revised form 29 November 2010 Accepted 8 December 2010 Available online 14 December 2010

Keywords: Cholic acid Baeyer-Villiger oxidation Microwave Photolysis

1. Introduction

The steroid system, selected by the evolutionary process to perform some of the most fundamental biological functions, has not only inspired biochemists and endocrinologists, but also become the basis of many important discoveries in organic chemistry [1].

Steroids can regulate a variety of biological processes and thus have the potential to be developed as drugs for the treatment of a large number of diseases including cardiovascular [2], autoimmune diseases [3], brain tumours, breast cancer, prostate cancer, osteoarthritis, etc. [4].

Modified steroids have attracted a great deal of attention these last years. Their preparation is a stimulating challenge to the organic chemist, often demanding the development of new and generally useful reactions [5–7]. Moreover, the biological properties of modified steroids have proved to be of interest [8–11].

The replacement of one or more carbon atoms of a steroid molecule by a heteroatom affects the chemical properties of a steroid and often results in useful alterations to its biological activity. The potential of heterosteroids in general, and azasteroids in particular, as novel drugs and the challenge of their synthesis prompted numerous research groups to undertake studies in this field. Particularly, the biological activity of azasteroids has been the subject of some reviews [12-14]. Those steroids are one of the best-

An efficient synthesis of 12-hetero steroids was achieved via a Baeyer-Villiger oxidation and a photolysis as the key steps. We set out to describe in this paper the first synthesis of 12-aza steroids. The characteristic ¹H and ¹³C NMR spectroscopic features of the synthesized compounds are reported.

© 2010 Elsevier Inc. All rights reserved.

known classes of xenobiotics [15], and several have been described as inhibitors of 5α -reductase [16,17].

Azasteroids are by far the most common heterocyclic steroids. This is probably due to the fact that a -NH- group has approximately the same size as a methylene group. Consequently, the insertion of a nitrogen atom into the steroid nucleus does not distort the shape of the molecule to any great extent.

We have recently reported a synthetic route to 3-hetero steroids from cholic acid [18,19]. We were now interested by the synthesis of 12-hetero derivatives of steroid and particularly of 12-aza steroids using the same starting material. Indeed, though many azasteroids have been reported, curiously and much to our surprise, 12-aza steroids have never been reported. So, in connection with our ongoing interest in the synthesis of heterosteroids, here we wish to report the extension of our method for the preparation of 12-heterosteroids (Scheme 1).

2. Experimental

All reactions were run under argon in oven-dried glassware. $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra were recorded at 200 or 400 and 50 and 100 MHz respectively, in CDCl₃ solutions. Chemical shifts (δ) are reported in ppm with tetramethylsilane as internal standard. IR spectra were recorded on a Perkin-Elmer 1600 spectrophotometer. Optical rotations were determined on a Perkin-Elmer 343 polarimeter. Flash chromatography was performed on silica gel (Merk 60 F254) and TLC on silica gel. Dichloromethane was distilled over calcium hydride and tetrahydrofuran (THF) over sodium/benzophenone. Triethylamine and pyridine were distilled

^{*} Corresponding author. Tel.: +33 491288416; fax: +33 49128828345.

E-mail addresses: malika.ibrahim@univ-cezanne.fr, malika.ibrahim@univ.u-3mrs.fr (M. Ibrahim-Ouali), luc.rocheblave@univ-lyon1.fr (L. Rocheblave).

⁰⁰³⁹⁻¹²⁸X/\$ - see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.steroids.2010.12.003

Scheme 1.

from potassium hydroxide and stored over KOH under argon. MWpromoted reactions were carried out in a Biotage Initiator MW. Temperature could be measured at the end of the reaction with a thermocouple thermometer.

Compound **2** was prepared according to the previously described procedure [20].

2.1. 3α , 7α , 24-Trimethoxy- 5β -cholan- 12α -ol (**3**)

To a stirred suspension of NaH (0.1 g, 4.4 mmol) in THF (10 mL) at $0 \circ C$ under argon was added a solution of tetrol 2 (0.5 g, 1.26 mmol) in 5 mL of THF. The reaction mixture was stirred for 15 min, and then iodomethane (274 µL, 4.4 mmol) was added dropwise. After 48 h at room temperature, the reaction was diluted with 10 mL of Et₂O and guenched by the slow addition of 10 mL of H₂O. The combined organic extracts $(3 \times 10 \text{ mL})$ were washed with 30 mL of brine, dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel ($Et_2O: 100\%$) to give **7** (0.45 g, 82%) as an oil. ¹H NMR (300 MHz, CDCl₃): 0.86 (d, *I*=6.5, 3H, H-21), 0.89 (s, 3H, H-19), 1.21 (s, 3H, H-18), 2.10 (bs, 1H, OH), 3.02 (m, 2H, H-24), 3.14 (m, 1H, H-12), 3.21 (s, 3H, OCH₃), 3.24 (m, 1H, H-3), 3.28 (s, 3H, OCH₃), 3.29 (s, 3H, OCH₃), 3.34 (m, 1H, H-7); ¹³C NMR (75 MHz, CDCl₃): 10.6, 16.9, 20.1, 24.9, 27.6, 28.2, 28.5, 29.5, 32.1, 32.8, 34.7, 34.9, 35.9, 36.9, 37.4, 39.2, 40.5, 44.6, 47.8, 50.8, 57.4, 57.6, 59.8, 74.9, 79.4, 82.2, 88.9. HRMS (EI) for C₂₇H₄₈O₄ [M⁺] calcd 436.3553 found 436.3558.

2.2. 12-Oxo- 3α , 7α , 24-trimethoxy- 5β -cholane (**4**)

Alcohol **3** (200 mg, 0.4 mmol) was mixed in a mortar with pyridinium chlorochromate (PCC) (0.13 g, 0.6 mmol). The mixture was transferred to a pressure-resistant tube (pyrex) and irradiated with MW at 170 °C for 15 min. The reaction mixture was filtered through a Celite pad and the filtrate and washings (CH₂Cl₂, 3×10 mL) were combined and evaporated under reduced pressure. The residue was chromatographed on silica gel (diethyl ether/petroleum ether: 7/3), to afford 0.12 g (71% yield) of 12-oxo steroid **4** as a colorless oil. ¹H NMR (300 MHz, CDCl₃): 0.85 (d, *J*=6.5, 3H, H-21), 0.89 (s, 3H, H-19), 1.24 (s, 3H, H-18), 3.00 (m, 2H, H-24), 3.20 (s, 3H, OCH₃), 3.26 (m, 1H, H-3), 3.30 (s, 3H, OCH₃), 3.31 (s, 3H, OCH₃), 3.32 (m, 1H, H-7); ¹³C NMR (75 MHz, CDCl₃): 11.5, 18.9, 22.4, 23.8, 26.4, 26.7, 27.6, 28.0, 29.3, 31.8, 34.7, 36.0, 37.5, 37.9, 39.4, 41.5, 46.6, 52.8, 53.8, 55.4, 56.0, 56.8, 58.5, 73.4, 76.9, 80.2, 214.3. HRMS (EI) for C₂₇H₄₆O₄ [M⁺] calcd 434.3396 found 434.3401.

2.3. 3α , 7α -Dimethoxy-13-oxa-C-homo-cholan-12-one (5)

To a solution of ketone **4** (0.26 g, 0.6 mmol) in dry dichloromethane (30 mL) containing *p*-toluenesulfonic acid (90 mg, 0.6 mmol) *m*-CPBA (12 mg) was added [19]. The solution was stirred for 12 h at room temperature. The solution was then diluted with water and extracted with dichloromethane (3×15 mL). The solution was washed successively with a 5% Na₂S₂O₃ solution, saturated brine, and water and was dried over anhydrous magnesium sulfate. The oily product, obtained by

evaporation of the solvent, was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH: 95/5) to afford 0.25 g of pure lactone **5** (97%) as an oil. ¹H NMR (300 MHz, CDCl₃): 0.86 (s, 3H, H-19), 1.05 (d, *J* = 6.4, 3H, H-21), 1.34 (s, 3H, H-18), 3.20 (s, 3H, OCH₃), 3.25 (m, 2H, H-3 and H-7), 3.31 (s, 3H, OCH₃), 3.32 (s, 3H, OCH₃), 3.35 (m, 1H, H-24); ¹³C NMR (75 MHz, CDCl₃): 14.5, 15.3, 17.7, 22.3, 24.2, 25.2, 26.1, 26.5, 27.5, 31.6, 32.8, 34.6, 35.2, 35.9, 36.3, 41.2, 42.7, 50.1, 55.7, 58.5, 58.9, 65.9, 73.3, 76.9, 80.2, 86.9, 174.8. HRMS (EI) for $C_{27}H_{46}O_5$ [M⁺] calcd 450.3345 found 450.3348.

2.4. 3α , 7α -Dimethoxy-13-oxa-C-homo-5 β -cholan-12-ol (**6**)

To a solution of lactone 5 (100 mg, 0.2 mmol) in dry dichloromethane (20 mL) at -78 °C diisobutyl-aluminium hydride (DIBAL) (1.0 M in hexane) (1.5 mL) [19] was added dropwise over the course of 10 min. The solution was stirred for 2 h at -78 °C and poured into ice water. After removal of the precipitates, the solution was washed with water (10 mL) and dried over anhydrous magnesium sulfate. Evaporation of the solvent gave lactol 6, which was purified by chromatography on silica gel with CH₂Cl₂/MeOH (95/5), to yield an oily product **6** (95 mg, 95%). ¹H NMR (300 MHz, CDCl₃: 0.87 (s, 3H, H-19), 1.06 (d, J=6.6, 3H, H-21), 1.35 (s, 3H, H-18), 2.16 (m, 2H, H-11), 3.21 (s, 3H, OCH₃), 3.25 (m, 1H, H-3), 3.32 (s, 3H, OCH₃), 3.33 (s, 3H, OCH₃), 3.36 (m, 1H, H-7), 5.22 (m, 1H, H-12), 5.36 (m, 1H, H-12); ¹³C NMR (75 MHz, CDCl₃): 14.5, 17.7, 22.3, 23.3, 24.3, 26.1, 27.5, 29.9, 31.6, 32.1, 32.8, 34.7, 35.9, 36.4, 42.2, 42.7, 50.1, 53.5, 55.4, 55.7, 58.5, 65.5, 73.3, 76.9, 80.3, 86.8, 93.3. HRMS (EI) for C₂₇H₄₈O₅ [M⁺] calcd 452.3502 found 452.3506.

2.5.

11-Iodo-C-nor-11,12-seco- 3α , 7α ,24-trimethoxy-cholan- 5β -yl formate (**7**)

To the lactol 6 (200 mg, 0.4 mmol) in dry benzene (25 mL) containing pyridine (0.7 mL) mercury(II) oxide (214 mg) and iodine (251 mg) was added. The solution was irradiated in a Pyrex vessel with a 100-W high-pressure mercury arc (EIKOSHA, PIH-100), for 2 h under an argon atmosphere [21]. The solution was filtered and the filtrate was washed with saturated aqueous NaHCO₃ (20 mL). The organic layer was dried with MgSO₄, filtered and concentrated to give a crude oily product. This product was purified by flash chromatography on silica gel (diethyl ether/petroleum ether: 9/1) to afford 0.22 g of formate 7 (88%) as an oil. ¹H NMR (300 MHz, CDCl₃): 1.06 (d, J = 6.5, 3H, H-21), 1.16 (s, 3H, H-19), 1.50 (s, 3H, H-18), 2.78 (m, 1H, H-3), 2.79 (m, 1H, H-7), 3.21 (m, 2H, CH2-I), 3.24 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.37 (m, 2H, H-24), 8.04 (s, 1H, CHO); ¹³C NMR (75 MHz, CDCl₃): 6.9, 13.8, 19.5, 19.7, 23.5, 24.4, 29.9, 30.8, 31.6, 32.0, 33.8, 34.1, 35.7, 38.3, 38.4, 41.5, 42.8, 46.2, 46.3, 57.1, 57.4, 59.3, 74.9, 82.4, 82.9, 89.2, 160.9. HRMS (EI) for C₂₇H₄₇IO₅ [M⁺] calcd 578.2468 found 578.2475.

2.6. 3α , 7α , 24-Trimethoxy-12-oxa- 5β -cholane (**8**)

A solution of the formate **7** (270 mg, 0.4 mmol) in dry THF (20 mL) was cooled at -78 °C. To this solution methyllithium in

diethyl ether (1 M, solution) (1.1 mL) was added dropwise while stirring [19]. After the solution was stirred for 3 h at $-78 \degree$ C, the temperature of the solution rose to room temperature. Evaporation of the solvent left a residue which was dissolved in diethyl ether (15 mL). The organic layer was washed with water (15 mL) and extracted with diethyl ether ($3 \times 15 \text{ mL}$). The extracts were dried over MgSO₄, filtered and then concentrated under vacuum to yield a crude oily product. This product was purified by flash chromatography on silica gel (diethyl ether/petroleum ether: 1/9) to afford pure 12-oxa steroid 8 (0.15 g, 75%) as an oil. ¹H NMR (300 MHz, CDCl₃): 1.06 (d, J = 6.4, 3H, H-21), 1.16 (s, 3H, H-19), 1.31 (s, 3H, H-18), 2.16 (m, 2H, H-11), 2.78 (m, 1H, H-3), 2.79 (m, 1H, H-7), 3.21 (s, 3H, OCH₃), 3.24 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.37 (m, 2H, H-24), 3.43 (m, 1H, H-11), 3.68 (m, 1H, H-11); ¹³C NMR (75 MHz, CDCl₃): 19.4, 20.7, 20.8, 23.5, 24.2, 27.6, 29.9, 32.0, 32.1, 32.2, 32.8, 33.8, 35.7, 37.5, 41.6, 43.5, 50.7, 57.1, 57.4, 58.5, 59.3, 61.8, 74.9, 80.6, 82.9, 90.4. HRMS (EI) for C₂₆H₄₆O₄ [M⁺] calcd 422.3396 found 422.3401.

2.7. Reduction of iodo formate 7

To a solution of iodo formate 7 (540 mg, 0.8 mmol) in dry toluene (20 mL) DIBAL (1.0 M in hexane, 7 mL) [19] was added at -78 °C under a nitrogen atmosphere. The solution was stirred for 30 min at $-78\,^\circ\text{C}$ and an additional 6 h at room temperature. The solvent was then evaporated and the product extracted with diethyl ether $(3 \times 20 \text{ mL})$. The solution was washed with water and dried over anhydrous magnesium sulfate. Evaporation of the solvent gave an oily product which was purified by chromatography on silica gel (petroleum ether/ethyl acetate: 1/9), to yield iodo alcohol 9 (0.36 g, 82%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃): 0.92 (s, 3H, H-18), 0.98 (d, J = 7.4, 3H, H-21), 1.02 (s, 3H, H-19), 2.0 (bs, 1H, OH), 2.78 $(m, 2H, H-3 and H-7), 3.05 (t, I = 6.8 Hz, 2H, CH_2I), 3.20 (s, 3H, OCH_3),$ 3.22 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.42 (m, 2H, H-24); ¹³C NMR (75 MHz, CDCl₃): 6.9, 19.3, 19.6, 23.3, 24.1, 24.2, 27.6, 29.8, 30.9, 31.2, 31.9, 32.4, 33.8, 33.9, 35.8, 38.7, 46.3, 49.5, 57.1, 57.4, 59.6, 61.2, 74.9, 75.6, 82.6, 89.7. HRMS calcd for C₂₆H₄₇IO₄ 550.2519, found 550.2523.

2.8. 3α , 7α , 24-Trimethoxy-12-thia-5 β -cholane (**11**)

To a solution of iodo alcohol **9** (300 mg, 0.6 mmol) in pyridine (20 mL) methanesulfonyl chloride (1.2 mL, 1.8 g, 15 mmol) [19] was added at 0 °C under a nitrogen atmosphere. The solution was stirred for 24 h at room temperature; the solvent was then evaporated and the product extracted with diethyl ether (3×15 mL). The combined extracts were dried over MgSO₄, filtered and then concentrated under vacuum to give the crude mesylate **10** (0.28 g, 68%). The latter was then used in the next step without further purification. ¹H NMR (300 MHz, CDCl₃): 0.92 (s, 3H, H-18), 0.96 (d, *J* = 6.8, 3H, H-21), 1.02 (s, 3H, H-19), 2.77 (m, 2H, H-3 and H-7), 2.94 (s, 3H, CH₃SO₂), 3.10 (m, 2H, CH₂I), 3.21 (s, 3H, OCH₃), 3.24 (s, 3H, OCH₃), 3.26 (s, 3H, OCH₃), 3.48 (m, 2H, H-24).

To a solution of mesylate **10** (280 mg, 0.44 mmol) in acetonitrile (20 mL) sodium sulfide nonahydrate (865 mg) was added. The solution was heated under reflux for 3 days. The solvent was evaporated and the product dissolved in diethyl ether. The solution was washed with water and dried over anhydrous magnesium sulfate. Evaporation of the solvent gave a crude product, which was purified by chromatography on silica gel (petroleum ether/ethyl acetate: 1/9), to give thia steroid **11** (70 mg, 36%) as an oil. ¹H NMR (300 MHz, CDCl₃): 1.03 (d, J = 6.4, 3H, H-21), 1.16 (s, 3H, H-19), 1.38 (s, 3H, H-18), 2.36 (m, 1H, H-11), 2.62 (m, 1H, H-11), 2.76 (m, 2H, H-3 and H-7), 3.21 (s, 3H, OCH₃), 3.23 (s, 3H, OCH₃), 3.24 (s, 3H, OCH₃), 3.42 (m, 2H, H-24); ¹³C NMR (75 MHz, CDCl₃): 18.8, 19.9, 22.6, 24.6, 26.2, 26.8, 27.6, 28.3, 29.9, 31.3, 31.4, 34.7, 35.7, 38.2, 39.2, 42.4,

43.2, 44.3, 48.6, 50.2, 57.1, 57.3, 59.3, 74.8, 82.6, 89.9. HRMS (EI) for $C_{26}H_{46}O_3S$ [M+] calcd 438.3168 found 438.3172.

2.9. 12-Thia- 3α , 7α , 24-trimethoxy- 5β -cholan-12-oxide (**12**)

Thia steroid **11** (100 mg, 0.2 mmol) was dissolved in CH₂Cl₂ (20 mL), under argon. The solution was cooled at 0 °C and m-CPBA (36 mg, 0.2 mmol) was added [19]. After stirring at this temperature for 4 h, the mixture was hydrolysed with a saturated solution of NaHCO₃ (10 mL). The aqueous layer was extracted with CH₂Cl₂ $(3 \times 25 \text{ mL})$. The organic phase was dried with MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 9/1 to 5/5) to give an inseparable 1/3 mixture of two diastereoisomers $12\alpha/12\beta$ (60 mg, 66%) as an oil. Major isomer: ¹H NMR (300 MHz, CDCl₃): 0.76 (s, 3H, H-18), 0.88 (d, J=6.4, 3H, H-21), 0.95 (s, 3H, H-19), 2.56 (m, 2H, CH₂-S=O), 3.02 (m, 2H, H-3 and H-7), 3.21 (s, 3H, OCH₃), 3.22 (s, 3H, OCH₃), 3.26 (s, 3H, OCH₃), 3.36 (m, 2H, H-24); ¹³C NMR (75 MHz, CDCl₃): 19.6, 20.4, 20.6, 26.4, 26.9, 27.4, 29.9, 32.1, 32.4, 33.6, 33.8, 34.5, 34.9, 35.6, 38.2, 38.4, 44.2, 45.8, 48.4, 57.2, 57.6, 59.3, 67.8, 74.2, 82.9, 89.1. HRMS (EI) for C₂₆H₄₆O₄S [M⁺] calcd 454.3117 found 454.3122.

2.10. 12-Thia- 3α , 7α ,24-trimethoxy- 5β -cholan-12,12-dioxide (13)

Thia steroid **11** (100 mg, 0.2 mmol) was dissolved in CH₂Cl₂ (15 mL), under argon. The solution was cooled at 0° C and m-CPBA (70 mg, 0.4 mmol) was added [19]. After stirring at room temperature for 24 h, the mixture was hydrolysed with a saturated solution of NaHCO₃ (10 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 25 mL). The organic phase was dried with MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH: 100/0 to 95/5) to afford 80 mg (85% yield) of sulfone 13 as colorless needles. Mp = 161–162 °C. ¹H NMR (300 MHz, CDCl₃): 0.82 (s, 3H, H-18), 0.88 (d, J = 6.5, 3H, H-21), 0.97 (s, 3H, H-19), 2.78 (m, 2H, H-3 and H-7), 3.20 (s, 3H, OCH₃), 3.21 (s, 3H, OCH₃), 3.24 (s, 3H, OCH₃), 3.26-3.48 (m, 4H, H-24 and CH₂-SO₂); ¹³C NMR (75 MHz, CDCl₃): 14.8, 19.2, 20.8, 25.6, 26.4, 27.2, 28.4, 28.9, 30.9, 31.7, 32.0, 32.2, 33.4, 34.2, 35.7, 37.8, 39.4, 43.5, 52.2, 57.1, 57.3, 59.0, 64.2, 74.5, 82.2, 89.8. HRMS (EI) for C₂₆H₄₆O₅S [M⁺] calcd 470.3066 found 470.3068.

2.11. 11,13-Diiodo-C-nor-11,12-seco-7α,7α,24-trimethoxy-5β-cholane (**14**)

To a solution of iodo formate 7 (290 mg, 0.5 mmol) in dry carbon tetrachloride (5 mL) iodotrimethylsilane (213 µL, 1.5 mmol) was added dropwise over a period of 5 min under an argon atmosphere. The solution was heated at 60–70 °C for 2 days and diethyl ether was added (15 mL). The organic layer was washed with 5% aqueous sodium hydrogen carbonate, 5% aqueous sodium thiosulfate, and saturated brine successively and then dried over anhydrous sodium sulfate. Evaporation of the solvent in vacuo left a red oil, which was passed through a short silica gel column (petroleum ether) to give pure diiodide 14 (0.3 g, 92%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃): 1.06 (d, J=6.4, 3H, H-21), 1.12 (s, 3H, H-19), 2.10 (s, 3H, H-18), 2.76 (m, 2H, H-3 and H-7), 2.96 (m, 1H, H-11), 3.19 (m, 1H, H-11), 3.21 (s, 3H, OCH₃), 3.23 (s, 3H, OCH₃), 3.24 (s, 3H, OCH₃), 3.38 (m, 2H, H-24); ¹³C NMR (75 MHz, CDCl₃): 6.7, 18.1, 19.2, 27.6, 28.0, 28.7, 29.9, 30.5, 30.7, 31.2, 31.4, 33.5, 35.7, 36.5, 37.2, 38.6, 41.0, 46.3, 48.8, 52.0, 57.1, 57.4, 59.1, 74.8, 82.9, 88.3. HRMS (EI) for C₂₆H₄₆I₂O₃ [M⁺] calcd 660.1536 found 660.1541.

Fig. 1. Literature examples of 12-oxa [22] and 12-thia steroids [23].

2.12. N-Benzyl 3α , 7α , 24-trimethoxy-12-aza-5 β -cholane (15)

To a solution of diiodide 14 (305 mg, 0.46 mmol) in dioxane (2 mL) benzylamine (125 µL, 122 mg, 1.15 mmol) was added. The solution was heated under reflux for 24h and extracted with dichloromethane $(3 \times 20 \text{ mL})$. The extract was washed with water, saturated brine, dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate: 9/1), to afford aza steroid **15** (0.16 g, 68%) as an oil. ¹H NMR (300 MHz, CDCl₃): 1.02 (d, J=6.4, 3H, H-21), 1.12 (s, 3H, H-19), 1.16 (s, 3H, H-18), 2.16 (m, 2H, H-11), 2.78 (m, 2H, H-3 and H-7), 3.20 (s, 3H, OCH₃), 3.23 (s, 3H, OCH₃), 3.24 (s, 3H, OCH₃), 3.45 (m, 2H, H-24), 3.60 (s, 2H, NCH₂Ph), 7.20-7.35 (m, 5H, H aromatic); ¹³C NMR (75 MHz, CDCl₃): 19.0, 19.5, 20.6, 25.0, 25.5, 26.6, 27.8, 28.3, 29.4, 29.9, 33.6, 34.6, 35.4, 35.8, 39.2, 42.6, 43.2, 44.3, 45.2, 49.8, 57.0, 57.3, 59.1, 63.6, 74.8, 76.9, 82.6, 127.3, 128.5, 128.9, 135.8. HRMS (EI) for C₃₃H₅₃NO₃ [M⁺] calcd 511.4025 found 511.4029.

2.13. 12-Oxa- 3α , 7α -dihydroxy- 5β -cholan-24-ol (16)

To a solution of 12-oxa steroid 8 (100 mg, 0.24 mmol) in chloroform (20 mL) trimethylsilyl iodide (0.2 mL) [19] was added. The solution was left overnight at room temperature. Methanol (1 mL) was then added to decompose any excess trimethylsilyl iodide. The solution was extracted with diethyl ether $(3 \times 10 \text{ mL})$, washed with water and saturated brine, and dried over anhydrous magnesium sulfate. Evaporation of the solvent gave a crude product, which was purified by chromatography on silica gel (CH₂Cl₂/MeOH: 9/1), to give triol **16** (55 mg, 60%) as an oil. $\alpha_D^{20} = +52.55^{\circ}$ (*c* = 0.310, CHCl₃); ¹H NMR (300 MHz, CDCl₃): 0.86 (s, 3H, H-18), 1.06 (d, J = 6.4, 3H, H-21), 1.08 (s, 3H, H-19), 2.01 (bs, 1H, OH), 2.03 (bs, 1H, OH), 3.18 (m, 2H, H-3 and H-7), 3.40 (m, 1H, H-11) 3.52 (m, 2H, H-24), 3.62 (m, 1H, H-11); ¹³C NMR (75 MHz, CDCl₃): 19.4, 20.4, 20.9, 23.2, 24.2, 30.4, 31.4, 31.8, 32.7, 32.8, 32.9, 36.6, 37.2, 38.2, 41.6, 46.2, 50.7, 58.5, 61.9, 63.2, 70.1, 71.4, 79.6. HRMS (EI) for C23H40O4 [M+] calcd 380.2927 found 380.2932.

2.14. 12-Thia- 3α , 7α -dihydroxy- 5β -cholan-24-ol (**17**)

The same procedure described above was used [19]. Reaction of 200 mg (0.46 mmol) of **11** in chloroform (20 mL) and 0.4 mL of ISi(CH₃)₃ gave, after 24 h of reaction and after purification by flash chromatography on silica gel (CH₂Cl₂/MeOH: 9/1), 120 mg (66%) of **17** as an oil. $\alpha_D^{20} = +46.41^{\circ}$ (c=0.540, CHCl₃); ¹H NMR (300 MHz, CDCl₃): 0.84 (s, 3H, H-18), 1.06 (d, J=6.4, 3H, H-21), 1.12 (s, 3H, H-19), 2.01 (bs, 1H, OH), 2.32 (dd, J=5.4 and 13.8, 1H, H-11), 2.58 (dd, J=5.6 and 13.4, 1H, H-11), 3.16 (m, 2H, H-3 and H-7), 3.48 (m, 2H, H-24); ¹³C NMR (75 MHz, CDCl₃): 18.6, 20.2, 23.2, 24.5, 26.8, 26.9, 30.4, 30.7, 31.2, 31.8, 32.5, 34.7, 34.8, 36.4, 37.9, 38.2, 42.1, 44.4, 48.6, 50.2, 63.4, 69.2, 69.8. HRMS (EI) for C₂₃H₄₀O₃S [M⁺] calcd 396.2698 found 396.2703.

2.15. 12-Thia- 3α , 7α -dihydroxy- 5β -cholan-12-oxide-24-ol (18)

The same procedure described above was used [19]. Reaction of 110 mg (0.24 mmol) of **12** in chloroform (20 mL) and 0.2 mL of ISi(CH₃)₃ gave, after 24 h of reaction and after purification by flash chromatography on silica gel (CH₂Cl₂/MeOH: 9/1), 65 mg (65%) of an inseparable 1/3 mixture of two diastereoisomers $18\alpha/18\beta$ as an oil. Physical data for the mixture: $\alpha_D^{20} = +36.68^{\circ}$ (c = 0.892, CHCl₃) and HRMS (EI) for C₂₃H₄₀O₄S [M⁺] calcd 412.2647 found 412.2650; NMR data for the major isomer (from spectra of the isomer mixture): ¹H NMR (300 MHz, CDCl₃): 0.88 (s, 3H, H-18), 1.07 (d, J = 6.5, 3H, H-21), 1.16 (s, 3H, H-19), 2.02 (bs, 1H, OH), 2.41 (m, 1H, H-11), 2.64 (m, 1H, H-11), 3.18 (m, 2H, H-3 and H-7), 3.52 (m, 2H, H-24); ¹³C NMR (75 MHz, CDCl₃): 19.6, 20.6, 20.9, 26.3, 26.8, 30.2, 31.6, 32.0, 32.4, 32.9, 34.6, 34.8, 36.2, 37.8, 38.2, 40.5, 44.3, 45.8, 48.2, 63.2, 67.6, 68.8, 69.9.

2.16. 12-Thia- 3α , 7α -dihydroxy- 5β -cholan-12,12-dioxide-24-ol (19)

The same procedure described above was used [19]. Reaction of 100 mg (0.21 mmol) of **13** in chloroform (20 mL) and 0.2 mL of ISi(CH₃)₃ gave, after 24 h of reaction and after purification by flash chromatography on silica gel (CH₂Cl₂/MeOH: 9/1), 60 mg (67%) of **19** as an oil. $\alpha_D^{20} = +36.10^\circ$ (c = 0.563, CHCl₃); ¹H NMR (300 MHz, CDCl₃): 0.89 (s, 3H, H-18), 1.04 (d, J = 6.4, 3H, H-21), 1.12 (s, 3H, H-19), 2.01 (bs, 1H, OH), 3.16 (m, 2H, H-3 and H-7), 3.22 (m, 1H, H-11), 3.45 (m, 1H, H-11), 3.52 (m, 2H, H-24); ¹³C NMR (75 MHz, CDCl₃): 15.4, 19.1, 20.4, 25.6, 26.4, 28.1, 30.2, 31.0, 31.4, 31.8, 32.2, 32.5, 34.4, 36.3, 38.4, 39.1, 40.6, 43.5, 52.4, 63.2, 64.1, 68.5, 69.7. HRMS (EI) for C₂₃H₄₀O₅S [M⁺] calcd 428.2596 found 428.2600.

2.17. N-Benzyl 12-aza- 3α , 7α -dihydroxy- 5β -cholan-24-ol (**20**)

The same procedure described above was used [19]. Reaction of 100 mg (0.19 mmol) of **15** and 0.2 mL of ISi(CH₃)₃ gave, after 24 h of reaction and after purification by flash chromatography on silica gel (CH₂Cl₂/MeOH: 9/1), 55 mg (62%) of **20** as an oil. $\alpha_D^{20} = +77.83^{\circ}$ (c=0.415, CHCl₃); ¹H NMR (300 MHz, CDCl₃): 0.86 (s, 3H, H-18), 1.08 (d, J=6.4, 3H, H-21), 1.12 (s, 3H, H-19), 2.01 (bs, 1H, OH), 2.12 (m, 1H, H-11), 2.34 (m, 1H, H-11), 3.10 (m, 2H, H-3 and H-7), 3.51 (m, 2H, H-24), 3.62 (s, 2H, NCH₂Ph), 7.21 (m, 5H, H aromatic); ¹³C NMR (75 MHz, CDCl₃): 19.1, 19.6, 20.1, 25.0, 25.4, 30.0, 30.8, 31.4, 32.2, 33.6, 34.1, 35.6, 36.1, 38.1, 42.9, 48.9, 53.6, 56.6, 62.1, 62.9, 63.1, 69.8, 71.0, 71.4, 127.3, 127.9, 128.4, 134.9. HRMS (EI) for C₃₀H₄₇O₃N [M⁺] calcd 469.3556 found 469.3561.

3. Results and discussion

There are very few syntheses of 12-oxa [22] and 12-thia [23] steroids reported in the literature before (Fig. 1).

And firstly, we turned our attention to the synthesis of 12-oxa and 12-thia cholanols. The key reactions leading to these new heterosteroids are schematically depicted in Schemes 2 and 3. Taking into account the *cis* A/B ring junction of the final product, cholic acid

(c) PCC, MW, 15 min, 71%; (d) *m*-CPBA, PTSA, CH₂Cl₂, 97%; (e) DIBAL, CH₂Cl₂, 95%; (f) HgO-l₂, pyridine, C₆H₆, hv, 88%; (g) MeLi, THF, - 78 °C, 75%.

Scheme 2. Synthesis of a 12-oxa- 5β -steroid **8** through a seven-step sequence.

1, a commercial bile acid both inexpensive and readily available, was our choice of starting material. We adopted a more attractive way for the synthesis of 12-heterosteroids. Hydroxyls at different positions on the nucleus have different reactivities towards alkylating agents, generally in the order C-3 > C-7 > C-12 [19,24]. Since the photochemical cleavage of lactol **6** to the seco-steroid **7** does not tolerate free hydroxy groups, 3α , 7α , 12α -tetrol **2** was selectively tri-methoxylated leaving only the 12α -hydroxy group unprotected.

Thus, we proceeded firstly to an easy reduction [20] of the side chain acid function of **1** with LiAlH₄ in tetrahydrofuran at room temperature. Tetrol **2** was then isolated in good yield. This latter was selectively methylated [25] with methyl iodide-sodium hydride in THF, leading to the 3α , 7α ,24-trimethoxy cholan-12 α -ol **3**, in 82% yield. Microwave (MW) [26] irradiation of **3** with pyridinium chlorochromate furnished ketone **4** very quickly, in a few minutes, and in 71% yield.

Reaction conditions : (a) DIBAL, CH_2CI_2 , - 78 °C to r.t., 12 h, 82%; (b) CH_3SO_2CI , pyridine, r.t., 24 h, 68%; (c) $Na_2S.H_2O$, CH_3CN , Δ , 3 days, 36%.

Scheme 3. Synthesis of 12-thia-5β-steroid 11.

Reaction conditions : (a) *m*-CPBA, 1 equiv, CH₂Cl₂, 0 °C, 1 h, 66%; (b) *m*-CPBA, 2 equiv, CH₂Cl₂, r.t., 24 h, 85%.

Scheme 4. Synthesis of sulfoxide 12 (1/3 mixture of 12α and 12β diastereomers) and sulfone 13.

Reaction conditions : (a) Me₃Sil-CCl₄, r.t., 48 h, 92%; (b) PhCH₂NH₂, dioxane, ∆, 24 h, 68%.

Scheme 5. First synthesis of an 12-aza steroid 15.

In the next step, we undertook the formation of the lactone **5** from ketone **4** [27,28]. The Baeyer–Villiger [29] oxidation of the latter, was done using the experimental conditions applied recently [19], and 13-oxa-C-homo-5 β -cholestan-12-one 5 was obtained as a single product in excellent yield (97%). The reduction of lactone **5** with DIBAL in toluene at $-78 \degree C$ for 4 h readily gave lactol **6**, which was subjected to the hypoiodide photolysis under the conditions described by Suginome and Yamada [21], to give formate 7 in 88% yield. The cyclization of formate **7** with methyllithium in THF afforded a novel 12-oxa steroid **8** in an optimized yield of 75%.

We turned then our attention to the introduction of a sulfur atom at the same position of the steroidal skeleton. The synthesis of 12-thia-5β-steroid **11** was achieved in three steps from iodo formate 7 (Scheme 3). Treatment of 7 with DIBAL in toluene at -78 °C gave iodo alcohol 9 in 82% yield. Its mesylation with mesylchloride/pyridine to the corresponding mesylate 10, followed by treatment of the latter with sodium sulfide in acetonitrile gave 12thia steroid 11 in 36% yield. The structure of 11 was determined by a series of ¹D NMR, COSY and NOESY experiments (400 MHz) and confirmed by the NOE effects. The NOE contacts observed in the NOESY spectra showed cross-peaks between the 7α -methoxy protons and the protons 14α , 6α and 11α . The α -geometry of all, which was derived from some peaks, indicates a spatial proximity between the 18-methyl protons and the protons at positions 11β , 5 β , 16 β . These interactions suggested a β stereochemistry for the 18-methyl protons.

Compounds containing a sulfide, sulfoxide or sulfone moiety are not only of synthetic interest but also are some of them of medicinal relevance [30,31]. So, we envisaged to oxidize this latter chemically [32,33]. And (Scheme 3), oxidation of **11** with 1 equiv. of 3-chloroperbenzoic acid in dichloromethane led to a 1/3 mixture of the corresponding sulfoxide **12** α and **12** β in good yield. The equatorial sulfoxide is the major isomer in accord with the known behaviour of peroxy acids with cyclic sulfides [34]. Indeed, the configuration at sulfur was allocated on the basis of the tendency of thianes to be oxidized predominantly to equatorial sulfoxides by peroxy acids. Thus, the ¹³C NMR spectrum of the compound **12** shows shifts for the major peaks corresponding to the α -configurated sulfoxide.

In order to obtain the sulfone as the sole product, oxidation on compound **11** was carried out with 2 equiv. of m-CPBA in CH₂Cl₂ at room temperature. The corresponding steroid **13** bearing a sulfone moiety was isolated in 85% yield (Scheme 4).

Surprisingly and to the best of our knowledge, no previous successful formation of 12-aza steroids has been reported in the literature. We turned then our attention to the introduction of a nitrogen atom at the C-12 position of the steroidal skeleton (Scheme 5). lodo formate **7** was converted into its diiodo derivative **14**, by treatment with trimethylsilyl iodide [35,36] in carbon tetra-chloride, in 92% yield. This latter was treated with benzylamine in dioxane under reflux for 48 h to afford *N*-benzyl 12-aza-5 β -steroid **19** in good yield. The structure of **15** was confirmed by spectroscopic methods. It is worth pointing out that here too, we observed retention of configuration at C-13.

Finally, in order to obtain the free alcohols we undertook different attempts of deprotection on steroids **8**, **11–13** and **15**. Thus, methoxy groups of compounds **8**, **11–13** and **15** were removed easily by using trimethylsilyl iodide. These demethylation reactions were carried out in chloroform at room temperature for 24 h, and afforded the expected deprotected hetero steroids **16–20** in satisfactory yields as indicated in Scheme 6.

Scheme 6. Final step of deprotection.

In conclusion, no report has so far been published on the synthesis of 12-aza steroids, and the present synthesis of the 12-aza- 5β -steroid **20** is, as far as we know, the first successful one. Thus, this synthesis was achieved *via* 9 steps, in 16% overall yield, starting from commercially available cholic acid **1**. Tests to assess the biological activity of the steroids **16–20** are being conducted by our group.

Acknowledgements

This work has been financially supported by the CNRS, INSERM and the Ministère de l'Enseignement Supèrieur et de la Recherche.

References

- [1] Zeelen F. Medicinal chemistry of steroids. Elsevier: Amsterdam; 1990.
- [2] Dubey RK, Oparil S, Imthurn B, Jackson EK. Sex hormones and hypertension. Cardiovasc Res 2002;53:688–708.
- [3] Latham KA, Zamora A, Drought H, Subramanian S, Matejuk A, Offner H, et al. Estradiol treatment redirects the isotype of the autoantibody response and prevents the development of autoimmune arthritis. J Immunol 2003;171:5820-7.
- [4] Sheridan PJ, Blum K, Trachtenberg M. Steroid receptors and disease. New York: Marcel Dekker; 1988. pp. 289–564.
- [5] Ibrahim-Ouali M, Santelli M. Recent advances in thiasteroids chemistry. Steroids 2006;71:1025-44.
- [6] Ibrahim-Ouali M. Recent advances in oxasteroids chemistry. Steroids 2007;72:475–508.
- [7] Ibrahim-Ouali M, Rocheblave L. Recent advances in azasteroids chemistry. Steroids 2008;73:375–407.
- [8] Back TG, Hu NX. Synthesis of antibiotic A25822-B. Tetrahedron 1993;49:337–48.
- [9] Dolle RE, Allaudeen HS, Kruse LI, Design. Synthesis of 14-alpha-methyl-15-aza-D-homosterols as novel antimycotics. J Med Chem 1990;33:877–80.
- [10] Chamberlin JW, Chaney MO, Chen S, Demarco PV, Jones ND, Occolowitz JL. Structure of antibiotic A25822b – novel nitrogen-containing C28-sterol with antifungal properties. J Antibiot 1974;27:992–3.
- [11] Liang T, Heiss CE, Cheung AH, Reynolds GF, Rasmusson GH. 4-Azasteroidal 5alpha-reductase inhibitors without affinity for the androgen receptor. J Biol Chem 1984;259:734–9.
- [12] Singh H, Parashar VV, Padmanabhan S, Mathur RB. Azasteroids: syntheses and significance. Indian J Pharm Educ 1970;4:2–20.
- [13] Akhrem AA, Lakhvich FA, Lis LG, Kuz'mitskii BB. Complete synthesis, structure, and function of 8-azasteroids – a new class of biologically active compounds. Seryya Khimichnykh Navuk 1982;6:81–90.
- [14] Ninomiya I, Azasteroids. Their syntheses and biological activities. Yuki Gosei Kagaku Kyokaishi 1972;30:318–42.
- [15] Akhrem AA, Kuz'mitskii BB, Lakhvich FA, Khripach VA, Zhuravkov YL. Search for selective heterosteroid-type immunotropic substances. Khimiya i Biol Immunoregulyatorov 1985:265–71.
- [16] Frye SV, Haffner CD, Maloney PR, Mook RA, Hiner RN, Batchelor KW, et al. 6-azasteroids – potent dual inhibitors of human type-1 and 2 steroid 5-alphareductase. J Med Chem 1993;36:4313–5.

- [17] Guarna A, Belle C, Machetti F, Occhiato EG, Payne AH, Cassiani C, et al. 19-Nor-10-azasteroids: a novel class of inhibitors for human steroid 5 alpha-reductases 1 and 2. J Med Chem 1997;40:1112–29.
- [18] Ibrahim-Ouali M, Botsi-Nkomendi N, Rocheblave L. Synthesis of heterosteroids. First synthesis of oxa steroid from cholic acid. Tetrahedron Lett 2010;51:93–5.
- [19] Ibrahim-Ouali M, Rocheblave L. First synthesis of thia steroids from cholic acid. Steroids 2010;75:701–9.
- [20] Czajkowska D, Morzycki JW. Synthesis of cholaphanes by ring closing metathesis. Tetrahedron Lett 2007;48:2851–5.
- [21] Suginome H, Yamada S. Photoinduced transformations. A 4-step substitution of a carbonyl group of steroidal ketones by an oxygen atom – a new method for the synthesis of cyclic ethers. J Org Chem 1985;50:2489–94.
- [22] Bernath G, Fulop F, Argay G, Kalman A, Sohar P. Stereochemical studies. Saturated heterocycles. A simple stereospecific synthesis of oxazasteroids. Tetrahedron Lett 1981;22:3797–800.
- [23] Ramadas SR, Chenchaiah PC, Rao JA, Kumaresan S. Approaches to the synthesis of 12-thiasteroids – synthesis of b-nor-6,12-bisthiaestra-1,3,5(10),8,14pentaen-17-one. Tetrahedron Lett 1983;24:5403–6.
- [24] Ettlinger MG, Fieser LF. Degradation of the bile acid side chain. J Biol Chem 1946:451–3.
- [25] The methoxy group was chosen as protective group of the three hydroxyl groups of compound 6 because chemically stable under the Suginome [21] conditions of photolysis.
- [26] Lidstrom P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis – a review. Tetrahedron 2001;57:9225–83.
- [27] Rothman ES, Wall ME, Roland Eddy C. Steroidal sapogenins. Steroidal C-ring lactones. J Am Chem Soc 1954;76:527–32.
- [28] Rivera DG, Pando Orlando, Bosch R, Wessjohann LA. A biomimetic approach for polyfunctional secocholanes: tuning flexibility and functionality on peptidic and macrocyclic scaffolds derived from bile acids. J Org Chem 2008;73:6229–38.
- [29] Ahmad MS, Moinuddin G, Khan IA. Steroid b-ring lactones reinvestigation. J Org Chem 1978;43:163–5.
- [30] Duggan DE. Sulindac therapeutic implications of the prodrug pharmacophore equilibrium. Drug Metab Rev 1981;12:325–37.
- [31] Winiwarter S, Roth HJ. The top ten NSAIDs: a molecular modelling study. Pharm Acta Helv 1994;68:181–9.
- [32] Iwama T, Matsumoto H, Shimizu H, Kataoka T, Muraoka O, Tanabe G. Pummerer reaction of 2-vinylcyclopropyl sulfoxides: generation and reactions of butadienyl-thionium ion intermediates. J Chem Soc Perkin Trans 1 1998:1569–76.
- [33] Stoodley RJ, Wilkins RB. Studies related to dihydro-1.4-thiazines. Thermal racemization of sulfoxides. J Chem Soc Perkin Trans 1 1974:1572–9.
- [34] Toshima K, Nozaki Y, Mukaiyama S, Tamai T, Nakata M, Tatsuta K, et al. Application of highly stereocontrolled glycosidations employing 2,6-anhydro-2-thio sugars to the syntheses of erythromycin-a and olivomycin-a trisaccharide. J Am Chem Soc 1995;117:3717–27.
- [35] Jung ME, Lyster MA. Quantitative dealkylation of alkyl esters via treatment with trimethylsilyl iodide – new method for ester hydrolysis. J Am Chem Soc 1977;99:968–9.
- [36] Olah GA, Narang SC, Gupta BGB, Malhotra R. Synthetic methods and reactions. Transformations with chlorotrimethylsilane sodium iodide, a convenient in situ iodotrimethylsilane reagent. J Org Chem 1979;44:1247–51.