assignments, respectively. [Found: C, 69.81; H, 8.37. C₁₇H₂₄O₄ (292) requires: C, 69.84; H, 8.27%.]

Acknowledgements—The authors thank Mr Sherief I. Khalifa and Mohammed M. Hafez for technical assistance.

REFERENCES

- 1. Trease, G. E. and Evans, W. C. (1985) *Pharmacognosy* 12th Edn, p. 452. Bailliere Tindall, London.
- El-Feraly, F. S., McPhail, A. T. and Onan, K. D. (1978) J. Chem. Soc. Chem. Comm. 75.

- Kubo, I., Miura, I., Pettei, M. J., Lee, Y.-W., Pilkiewicz, F. and Nakanishi, K. (1977) Tetrahedron Letters 4553.
- Kioy, D., Gray, A. I. and Waterman, P. (1989) J. Nat. Prod. 52, 174.
- 5. Al-Said, M. S., Khalifa, S. I. and El-Feraly, F. S. (1989) *Phytochemistry* 28, 297.
- 6. Still, W. C., Khan, M. and Mitra, A. (1978) J. Org. Chem. 43, 2923.
- 7. Kubo, I., Lee, Y.-W., Pettei, M., Pilkiewicz, F. and Nakanishi, K. (1976) J. Chem. Soc. Chem. Comm. 1013.
- 8. Corbet, R. E. and Chee, T. L. (1976) J. Chem. Soc. Perkin 1 850.
- 9. El-Feraly, F. S. and Hufford, C. D. (1982) J. Org. Chem. 47, 1527.

Phytochemistry, Vol. 29, No. 3, pp. 977-979, 1990. Printed in Great Britain. 0031-9422/90 \$3.00+0.00 © 1990 Pergamon Press plc

OPLOPANES FROM THE LEAVES OF SENECIO MEXICANUS

PEDRO JOSEPH-NATHAN, J. ROBERTO VILLAGÓMEZ, LUISA U. ROMÁN* and JUAN D. HERNÁNDEZ*

Departmento de Química del Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Apartado 14-740, México D.F., 07000 México; *Instituto de Invetigaciones Químico Biológicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacán, 58240 México

(Received 12 July 1989)

Key Word Index-Senecio mexicanus; Compositae; oplopane derivatives; structural determination.

Abstract—The leaves of *Senecio mexicanus* afforded three known oplopane derivatives previously found in the roots of the plant and a new oplopane whose structure and stereochemistry followed from X-ray crystallography.

INTRODUCTION

Some species of the genus Senecio such as S. abrotanifolius L. [1], S. kleinia Less [2] and S. implexus [3] contain oplopane derivatives. In addition, Acrisione denticulata [4], Juniperus recurva [5] and Tussilago farfara [6, 7] also contain oplopanes. Of special interest is T. farfara which gave an oplopane which acts as a cardiovascular respiratory stimulant [6] and which is also a dual receptor antagonist of the platelet activating factor [7]. Recently, we reported the isolation and structural elucidation of the oplopanes 1–3 from the roots of S. mexicanus Mc. Vaugh [8, 9]. Now, we describe the isolation of the oplopane derivatives 1–4 from the leaves of S. mexicanus. The structure and stereochemistry of the new natural product 4 was determined from a single crystal X-ray analysis of its 2,4-dinitrophenylhydrazone derivative (5).

RESULTS AND DISCUSSION

Chromatography of the hexane extracts of S. mexicanus gave the four oplopane derivatives 1-4. Three of these compounds (1-3) were previously found in the roots of the plant [8, 9]. Compound 4 is a new oplopane derivative. Its IR spectrum exhibited carbonyl (1735 cm⁻¹) and double bond (1654 cm⁻¹) absorptions. The ¹H NMR spectrum shows two doublets due to the methyl groups of an isopropyl group at $\delta 0.80$ and 1.00, a triplet due to a methyl group coupled with a methylene group at $\delta 1.05$ and two broad singlets due to an exocyclic methylene at $\delta 4.55$ and 4.70. The ¹³C NMR spectrum (Table 1) shows 15 signals, one at $\delta 218.0$ due to a carbonyl group and two at $\delta 149.9$ and 104.0 corresponding to an exocyclic methylene group.

To establish the stereochemistry of 4, its 2,4-dinitrophenylhydrazone derivative (5) was prepared, because crystals of 4 were not suitable for X-ray diffraction analyses. The molecular perspective of 5 (Fig. 1) shows the alpha-orientation of the ethyl group at C-3, while the other chiral centres (C-4, C-5 and C-9) show the same trans-arrangement as in compounds 1-3 [8, 9].

When compound 5 was prepared, the acid reaction conditions caused isomerization of the C-8/C-10 double bond in 4 to the C-1/C-9-position, providing compound 6. The ¹HNMR spectrum shows a singlet at $\delta 5.50$ corresponding to H-1. The H-4 and H-8 signals are

С	4*	6	7	
1	40.1	124.2	42.0	
2	218.0	212.2	219.4	
3	51.8ª	52.1°	55.4	
4	50.6ª	49.8	50.0	
5	43.6 ^b	51.7°	48.8	
6	26.1	24.0 ^d	26.5	
7	35.0	35.7	34.9	
8	149.9	36.5	149.7	
9	42.1 ^b	188.8	46.8	
10	104.0	17.9	103.8	
11	28.1	28.9	28.4	
12	21.3	21.7	21.8	
13	15.7	15.7	15.8	
14	17.5	23.8 ^d	22.3	
15	11.9	10.1	10.3	

Table 1. ¹³C NMR spectral data of compounds 4, 6 and 7 (75.4 MHz, CDCl₃)

*Measured at 25.2 MHz.

^{a-d}Assignments having the same letter may be interchanged.

partially overlapped at $\delta 2.30$ as a broad doublet and a septuplet, respectively. The coupling constants of H-8 established the α -orientation of the C-10 methyl group, which gave a doublet at $\delta 1.18$. Two doublets due to the isopropyl group and a triplet due to Me-15 were observed at $\delta 0.87$, 0.98 and 0.87, respectively. The IR spectrum shows the carbonyl absorption at 1690 cm⁻¹.

Compound 1 was hydrogenated in the presence of Pd/C. Under these conditions both the C-3/C-14 and C-8/C-10 double bonds were hydrogenated. When a small amount of potassium hydroxide was added [10], only the C-3/C-14 double bond was hydrogenated to give 7, which is an epimer of 4. Thus the ¹H NMR spectrum of 7 shows,

EXPERIMENTAL

General. Mps: uncorr. ¹H and ¹³C NMR spectra were measured in $CDCl_3$ with TMS as int. standard. TLC was carried out on 0.25 mm layers of silica gel PF_{254} (Merck).

Plant material. Senecio mexicanus Mc. Vaugh was collected at Km 53 of the Morelia-Zacapu highway, in the State of Michoacán, México, during December 1987. A voucher specimen(JDH 37) is deposited at the Herbarium of Departmento Botánico, ENCB-IPN, Mexico City, where Prof. Jerzy Rzedowski identified the plant material.

Extraction and isolation. Air-dried leaves (2 kg) of S. mexicanus were extracted with hexane under reflux and subjected to CC on silica gel 60 (70-230 mesh). Compounds 1 (500 mg), 2 (1 g) and 3 (50 mg) were eluted with non-polar solvents and their spectral data compared with authentic samples [8, 9]. Frs eluted with hexane-CHCl₃ (7:3) yielded 4 (150 mg) as crystals, mp 54-56°. IR $\nu_{\text{max}3}^{\text{max}}$ cm⁻¹: 1735 (C=O) 1654 (C=C). ¹H NMR (90 MHz): $\delta 0.80$ and 1.00 (each 3H, 2d, $J_{12, 11} = J_{13, 11} = 7$ Hz, isopropyl), 1.05 (3H, t, J = 7 Hz, Me-15), 4.55 (1H, br s, H-10) and 4.70 (1H, br s, H-10'), ¹³C NMR: see Table 1;

$$[\alpha] \frac{589 \quad 578 \quad 546 \quad 436 \quad 365 \text{ nm}}{-108 \quad -115 \quad -140 \quad -370 \quad -1685} (\text{CHCl}_3; c \ 0.13).$$

2,4-Dinitrophenylhydrazone of 4. To a sample of 4 (100 mg) in 3 ml EtOH was added 1.5 ml 2,4-dinitrophenylhydrazine in EtOH-H₂O-H₂SO₄. After standing at room temp. for 30 min, orange needles mp 144–146° were obtained by recrystallization of the product from CHCl₃-EtOH.

Fig. 1. Molecular perspective of compound 5.

X-Ray analysis of compound 5. Single crystals of 5 were grown by slow crystallization from CHCl₃-EtOH. They were orthorhombic, space group $P2_12_12_1$ with a=6.9454(17), b=10.4520(41), c=29.4989(105) Å and $d_{calc.}=1.24$ g/cm³ for Z = 4 (M, 400). The size of the crystal used for data collection was $0.40 \times 0.20 \times 0.02$ mm. No absorption correction was necessary ($\mu=6.7$ cm⁻¹). A total of 1617 reflections were measured for $3^{\circ} \leqslant \theta \leqslant 110^{\circ}$ of which 1251 reflections were considered to be observed [$l \ge 2.5\sigma$ (I)]. The final discrepancy indices were R = 5.06% using 1249 reflections in the final refinement. The final difference Fourier map was essentially featureless, the highest residual peaks having densities of 0.15 e/Å³.

Compound 6. When compound 5 was prepared, a small amount of 6 was also formed. UV λ_{max}^{EiOH} nm (log e): 232 (3.64); IR $\nu_{max}^{CHc1_5}$ cm⁻¹; 1690, 1600 (C=C-C=O). ¹H NMR (300 MHz): $\delta 0.87, 0.98$ (3H each, 2d, $J_{12, 11} = J_{13, 11} = 7$ Hz, isopropyl), 0.87

(3H, t, J = 7 Hz, Me-15), 1.18 (3H, d, J = 7 Hz, Me-10), 2.30 (1H, m, $J_{8, 10} = J_{8, 7\beta} = 6$ Hz; $J_{8, 7a} = 12$ Hz, H-8) and $\delta 5.50$ (1H, br s, H-1); ¹³C NMR: see Table 1;

$$[\alpha] \frac{589 578 546 436 365 \text{ nm}}{+59 +63 +77 +207 +854} (CHCl_3; c \ 0.2).$$

Compound 7. To a soln of 1 (243 mg) in 10 ml EtOH (99.5%) was added KOH (250 mg) [10] in 10 ml of EtOH. Then, 24 mg Pd/C (5%) were added. The mixture was stirred for 2 hr at room temp. and 1 atm. pressure in H₂. The product was chromatographed and 7 was obtained as crystals mp 49–51°. IR $v_{max}^{CH_{23}}$ cm⁻¹: 1735, 1650 (C=C-C=O). ¹H NMR (90 MHz): $\delta 0.79$. 0.98 (each 3H, 2d, $J_{12, 11} = J_{13, 11} = 7$ Hz, isopropyl), 0.87 (3H, d, J = 7 Hz, Me-15), 4.58 (1H, br s, H-10) and $\delta 4.78$ (1H, br s, H-10'); ¹³C NMR: see Table 1.

Acknowledgements—We are grateful to Prof. J. Rzedowski (ENCB-IPN) for identification of plant material, and to CoSNET, CoNaCyT and Proyectos Estratégicos-SEP (Mexico) for financial support.

REFERENCES

- 1. Bohlmann, F. and Suwita, A. (1976) Chem. Ber. 109, 2014.
- 2. Bohlmann, F., Zdero, C. and Gupta, R. K. (1981) *Phytochemistry* 20, 2024.
- 3. Bohlmann, F., Ahmed, M., Jakupovic, J. and Jeffrey, C. (1981) *Phytochemistry* 20, 251.
- 4. Abdel Aal, M., Bohlmann, F., Sarg, T., El-Domiaty, M. and Nordenstam, B. (1988) *Phytochemistry* 27, 2599.
- 5. Weyerstahl, P., Marschall-Weyerstahl, H., Manteuffel, E. and Kaul, V. K. (1988) Planta Med. 3, 259.
- 6. Yiping, Li and Yunmu, W. (1988) Gen. Pharmacol. 19, 261.
- L. Huang, San Bao, Chang, M. N., García, M. L., Han, Q. Q., Huang, L., King, V. Kaczorowski, G. S. and Winwuist, R. J. (1987) Eur. J. Pharmacol. 141, 269.
- Joseph-Nathan, P., Villagómez, J. R., Román, L. U. and Hernández, J. D. (1989) Phytochemistry 28, 1207.
- Joseph-Nathan, P., Villagómez, J. R., Rojas-Gardida, M., Román, L. U. and Hernández, J. D. (1989) *Phytochemistry* 28, 2397.
- Augustine, R. L. (1965) in Catalytic Hydrogenation, Techniques and Applications in Organic Synthesis, p. 46. New Jersey.