α-Substitution of 2-Alkenoic Esters via α-Carbanion Intermediates

Yoshiro SATO*, Sachiyo TAKEUCHI

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabedori, Mizuho-ku, Nagoya 467, Japan

A direct method for the α -substitution of 2-alkenoic esters would consist of the generation of the α -carbanion followed by the addition of an appropriate electrophile. However, the usefulness of such an anion intermediate has not been generally recognized in synthetic chemistry because the removal of a proton from a 2-alkenoic ester having an H-atom at C-4 does not afford a vinyl anion but an allyl anion¹.

We recently reported that the fluoride ion-induced desilylation of (*E*)-2-trimethylsilyl-2-alkenenitriles gives stereospecifically (*Z*)-1-cyano-1-alkenyl anion intermediates, which may be converted into (*Z*)-2-alkenenitriles or (*E*)-2-(1-hydroxyalkyl)-2-alkenenitriles with retention of configuration². We now describe the formation of the α -carbanions of *t*-butyl 2-alkenoates by a similar desilylation and the reaction of these carbanions with water or aldehydes as electrophiles. The *t*-butyl 2-trimethylsilyl-2-alkenoates (3) used as starting compounds were prepared from aldehydes (1) and the lithium enolate of *t*-butyl bis[trimethylsilyl]acetate (2) by a modifica tion of the method of Ref.³ (Table 1). All products 3 were ob tained as mixtures of stereoisomers.

The C—Si bond in 3 is readily cleaved by treatment of com pounds 3 with tetrabutylammonium fluoride in tetrahydrofu ran even at low temperature (-20° C or -78° C). Desilylation in moist tetrahydrofuran leads to the formation of *t*-butyl 2-al kenoates (5) in high yields (Table 2) whereas desilylation of \therefore in the presence of an aldehyde affords *t*-butyl 2-(1-hydroxyal kyl)-2-alkenoates (6a-e, 7a, 7b) in good yields (Table 3).

The (Z/E)-ratios of products 5, 6, and 7 differ considerably from those of the starting compounds 3. As was found for two representative examples (6c, 6d) these (Z/E)-ratios are nearly the same for reaction temperatures of -20° C and -78° C This suggests that the intermediate anion exists in a ketene acetal form (4) rather than in a (Z)- or (E)-1-t-butoxycarbon yl-1-alkenyl anion form (4' or 4", respectively).

Table 1.	t-Butyl	2-Trimethylsil	yl-2-alkenoates	(3) prepared	d
----------	---------	----------------	-----------------	--------------	---

Prod- uct	Yield [%]	E/ Z- Ratio ^a	b.p. [°C]/ torr ^b	Molecular formula ^c	¹ H-N.M.R. (CDCl ₃ /TMS _{int}) δ [ppm]		
						SiCH ₃	—СН=
 3a	96	92/8	112-113°/47	C ₁₅ H ₃₀ O ₂ Si	(<i>E</i>)	0.13	5.74
				(270.5)	(Z)	0.22	6.81
3b	81	62/38	143-144°/17	C17H34O2Si	(E)	0.14	6.06
50	01	,		(298.5)	(Z)	0.23	7.07
3c	97	93/7	100-102°/18	C ₁₇ H ₃₄ O ₂ Si	(E)	0.13	5.63
34		,,,,,		(298.5)	(Z)	0.23	6.83
3d	95	86/14	110-112°/20	C ₁₆ H ₃₀ O ₂ Si	(E)	0.12	5.82
30	3.5	00/14	110 110 / 20	(282.5)	(Z)	0.22	6.85
3e	91	97/3	102-103°/15	d	(E)	0.24	6.75

^a Determined by G.L.C. analyses (Triton X-305).

h W.....t. Hadden

 $^{\rm c}$ Satisfactory microanalyses obtained: C, $\pm 0.30;$ H, $\pm 0.37.$

^d Ref³ no h.n. reported.

Table 2. t-Butyl 2-Alkenoates (5a-e) prepared

Prod- uct	Yield [%]	(E/Z)- Ratio ^a	n.p. [°C]/torr ^ь	Molecular formula ^e	¹ H-N.M.R. (CDCl ₃ /TMS _{int}) δ [ppm]				
	[20]					R-CH=	=СН-СО	J _{Н.с.Н.в} [Hz]	
5a	91	49/51	111°/65	$C_{12}H_{22}O_2$	(<i>E</i>)	6.79	5.69	16.2	
				(198.3)	(Z)	5.84	5.60	11.8	
5b	88	50/50	129-130°/39	$C_{14}H_{26}O_2$	<i>(E)</i>	6.85	5.72	15.6	
				(226.4)	(Z)	6.10	5.65	11.1	
5c	93	37/63	142°/50	$C_{14}H_{26}O_{2}$	(<i>E</i>)	6.68	5,70	15.7	
	(94) ^d	$(38/62)^{d}$		(226.4)	(Z)	(5	(5.6-5.9, multiplet)		
5d	79	54/46	133-134°/69	$C_{13}H_{22}O_2$	(E)	6.80	5.53	16.0	
	(82) ^d	(57/43) ^d		(210.3)	(Z)	5.87	5.48	11.8	
5e	71	77/23	106-107°/15	C ₁₃ H ₁₆ O ₂ ^e	(E)	7.57	6.33	15.9	
				(204.2)	(Z)	6.82	5.84	13.3	

^a Determined by G.L.C. analyses (Triton X-305).

^b Kugelrohr distillation.

^c Satisfactory microanalyses obtained: C, ± 0.30 ; H, ± 0.28 ,

^d The reaction was carried out at -78 °C.

^e Ref.⁴, (E)-isomer, b.p. 144°C/8 torr.

Table 3. t-Butyl 2-(a-Hydroxybenzyl)-2-alkenoates (6a-e) and t-Butyl 2-(1-Hydroxyalkyl)-4-methyl-2-heptenoates (7a, b)

Prod- uct	Yield [%]	(E/Z)- Ratio ^a	b.p. [°C]/torr ^b or m.p. [°C]	Molecular formula ^v	I.R. (film) $v [cm^{-1}]$			¹ H-N.M.R. (CDCl ₃ /TMS _{int})	
						$v_{C=C}$	$v_{\rm CO}$	v _{on}	$\delta_{-CH} = [ppm]$
6a	76	25/75	b.p. 115°/2	$C_{19}H_{28}O_3$ (304.4)		1640	1710	3350	(E) 6.62 (Z) 5.85
6b	75	29/71	b.p. 136-137°/0.15	$C_{21}H_{32}O_3$ (332.5)		1645	1710	3420	$\begin{array}{ccc} (Z) & 5.85 \\ (E) & 6.82 \\ (Z) & 6.04 \end{array}$
6c	90 (90) ^d	11/89 (13/87) ^d	b.p. 108-109°/0.15	$C_{21}H_{32}O_3$ (332.5)		1635	1700	3420	(E) 6.65 (Z) 5.79
6d	73 (66) ^d	33/67) (34/66) ^d	b.p. 102°/0.3	$C_{20}H_{28}O_3$ (316.4)		1635	1700	3420	(E) 6.73 (Z) 5.96
бе	48	43/57	(E) m.p. 82-83°e (Z) m.p. 108-110°e	$C_{20}H_{22}O_3$ (310.4)	(E) (Z)	1640 1630	1700	3420 ^f	(<i>E</i>) 7.86
7a	75	12/88	b.p. 105°/0.7	$C_{18}H_{34}O_3$	(2)	1630	1670 1710	3420 ^r 3440	(Z) 6.96 (E) 6.42
7 b	77	17/83	b.p. 125°/0.8	$C_{19}H_{34}O_3$		1640	1700	3440	$\begin{array}{ccc} (Z) & 5.59 \\ (E) & 6.48 \\ (Z) & 5.64 \end{array}$

^a Determined by G.L.C. analyses (Triton X-305).

^b Kugelrohr distillation.

^c Satisfactory microanalyses obtained: C, ± 0.35 ; H, ± 0.31 .

^d The reaction was carried out at -78° C.

^e Separated by preparative T.L.C. (silica gel; hexane/chloroform/ ether=5/15/1) and recrystallized from hexane.

' Nujol.

All experiments are carried out under an atmosphere of argon.

t-Butyl 2-Trimethylsilyl-2-alkenoates (3); Improved Procedure³:

To a stirred solution of t-butyl bis[trimethylsilyl]acetate (1.50 g, 5.75 mmol) in dry tetrahydrofuran (12 ml) at -78° C is added a 15% solution of butyllithium in hexane (3.65 ml, 5.7 mmol). After 1 h, the aldehyde (1; 5 mmol) in dry tetrahydrofuran (8 ml) is added dropwise and stirring is continued for 0.5 h and then at room temperature for 1 h. Citric acid (10%; 20 ml) is added and the mixture is extracted with ether (3 × 20 ml). The organic extract is washed with water (20 ml), dried with calcium chloride, and concentrated. The residual oil is distilled under reduced pressure to give the pure product 3.

t-Butyl 2-Alkenoates (5); General Procedure:

To a stirred solution of a *t*-butyl 2-trimethylsilyl-2-alkenoate (3; 1 mmol) and water (0.03 ml, 1.7 mmol) in tetrahydrofuran (5 ml) is added a solution of tetrabutylammonium fluoride (310 mg, 1.2 mmol) in tetrahydrofuran (6 ml) at -20° C or -78° C. Stirring is continued for 45 min at the same temperature and then for 30 min at room temperature. The mixture is poured into 5% hydrochloric acid (10 ml) and extracted with ether (3 × 15 ml). The ether layer is washed with water (15 ml), dried with magnesium sulfate, and concentrated. Kugelrohr distillation of the residual oil affords the pure alkenoate 5.

t-Butyl 2-(1-Hydroxyalkyl)-2-alkenoates (6 and 7); General Procedure:

A solution of tetrabutylammonium fluoride (310 mg, 1.2 mmol) in tetrahydrofuran (6 ml) is dried with molecular sieves 4A overnight and added dropwise to a mixture of a compound 3 (1 mmol) and the aldehyde (1a, d, e; 1.5 mmol) in dry tetrahydrofuran (5 ml) at -20° C or -78° C. The reaction is continued and the mixture worked up as described above.

Received: April 13, 1983

- ¹ H. O. House, *Modern Synthetic Reactions*, 2nd Edn., Benjamin, California, 1972, p. 555-558.
- N. Petragnani, M. Yonashiro, Synthesis 1982, 521.

- ² Y. Sato, Y. Niinomi, J. Chem. Soc. Chem. Commun. 1982, 56.
- Y. Sato, K. Hitomi, J. Chem. Soc. Chem. Commun. 1983, 170.
- S. L. Hartzell, M. W. Rathke, Tetrahedron Lett. 1976, 2737.
- ⁴ C. R. Hauser, B. E. Hudson, B. Abramovitch, J. C. Shivers, Org. Synth. Coll. Vol. 111, 144 (1955).

^{*} Address for correspondence.

B. A. Feit, U. Melamed, R. R. Schmidt, H. Speer, J. Chem. Soc. Perkin Trans. 1 1981, 1329.