Highly Enantioselective Conjugate Addition of 3-Substituted Oxindoles to Vinyl Sulfone Catalyzed by Binaphthyl-Modified Tertiary Amines

Hyun Joo Lee, Seung Hee Kang, Dae Young Kim*

Department of Chemistry, Soonchunhyang University, Asan, Chungnam 336-745, Korea Fax +82(41)5301247; E-mail: dyoung@sch.ac.kr Received 25 February 2011

Abstract: The enantioselective conjugate addition reaction of 3substituted oxindoles with 1,1-bis(benzenesulfonyl)ethylene by binaphthyl-modified bifunctional organocatalysts was investigated. The corresponding Michael adducts, containing a quaternary center at C3 position of the oxindoles, were generally obtained in high yields with excellent enantioselectivities (up to 99% ee).

Key words: oxindole, vinyl sulfone, conjugate addition, bifunctional organocatalysis, asymmetric catalysis

Oxindole structures exist in a large number of natural products and bioactive molecules.¹ In particular, oxindole derivatives bearing a C3 quaternary carbon stereocenter are a versatile structural motif found in a variety of biologically and pharmaceutically active natural products and utilized as building blocks for indole alkaloid synthesis.² Therefore, several methods for their asymmetric formation and transformation are of considerable interest. Discovering diverse electrophiles to react with 3-substituted oxindoles for the synthesis of diversely structured 3,3-disubstituted oxindoles is still strongly desired. Among the established strategies for the synthesis of chiral 3,3-disubstituted oxindoles, the transition-metal-catalyzed asymmetric reaction has been intensively studied.³ Recently, organocatalytic enantioselective conjugate addition reactions of oxindoles with enals and nitroalkenes have been reported.⁴ The Lu group reported the stereoselective conjugate addition of 3-substituted oxindoles to 1,1-bis(benzenesulfonyl)ethylene,^{5,6} which is a valuable and unique acceptor in conjugate addition and subsequent desulfonation, might provide a viable approach for the construction of optically enriched 3,3-alkyl-/aryl-disubstituted oxindoles.7

As part of the research program related to the development of synthetic methods for the catalytic carbon–carbon bond formations,⁸ we recently reported the organocatalytic conjugate addition reaction to α , β -unsaturated carbonyl compounds⁹ and the other Michael acceptors.¹⁰

We envisioned that the assembly of a structurally welldefined chiral 1,2-diamine and binaphthyl scaffold with a H-bonding motif could constitute a new class of bifunctional organocatalyst. The rigid binaphthyl structure can serve as an efficient stereocontrolling axial chiral element.

SYNLETT 2011, No. 11, pp 1559–1562 Advanced online publication: 01.06.2011 DOI: 10.1055/s-0030-1260770; Art ID: U01911ST © Georg Thieme Verlag Stuttgart · New York

Figure 1 Structures of various chiral bifunctional organocatalysts

In this letter, we wish to describe the enantioselective conjugate addition reaction of prochiral 3-substituted oxindoles with 1,1-bis(benzenesulfonyl)ethylene catalyzed by binaphthyl-modified bifunctional organocatalysts bearing both central and axial chiral elements.

H. J. Lee et al.

1560

				PhO ₂ S	
	R O + F Boc	SO ₂ Ph SO ₂ Ph	cat. (10 mol%) solvent, 6 h, r.t.		─SO₂Ph R ➤O
Entry	1 R	Cat.	Solvent	Yield (%) ^a	ee (%) ^b
1	1a Bn	Ι	CH_2Cl_2	88	19
2	1a Bn	п	CH_2Cl_2	90	-35
3	1a Bn	III	CH_2Cl_2	91	83
4	1a Bn	IV	CH_2Cl_2	83	-9
5	1a Bn	V	CH_2Cl_2	89	97
6	1a Bn	VI	CH_2Cl_2	90	95
7	1a Bn	VII	CH_2Cl_2	92	61
8	1a Bn	VIII	CH_2Cl_2	82	81
9	1f Ph	III	CH_2Cl_2	88	88
10	1f Ph	V	CH_2Cl_2	89	81
11	1f Ph	VI	CH_2Cl_2	90	90
12	1f Ph	VIII	CH_2Cl_2	90	95
13	1f Ph	VIII	EtOH	87	60
14	1f Ph	VIII	Et ₂ O	80	61
15	1f Ph	VIII	PhMe	88	89

^a Isolated yield.

^b Enantiomeric excess was determined by HPLC analysis using Chiralpak IA column.

In an attempt to validate the feasibility of the organocatalytic enantioselective conjugate addition reaction of 3-substituted oxindoles, we initially investigated the reaction system with 3-benzyl oxindole **1a** with 1,1-bis(benzenesulfonyl)ethylene (**2**) in the presence of 10 mol% of catalyst in dichloromethane at room temperature. We first examined the impact of the structure of catalysts **I–VIII** (Figure 1) on enantioselectivities (Table 1, entries 1–8). Takemoto's catalyst **I** and quinine-derived thiourea catalyst **II** were ineffective (Table 1, entries 1 and 2). While binaphthyl-modified chiral bifunctional organocatalysts **III–VIII** bearing both central and axial chiral elements effectively promoted the addition in high yield with high enantioselectivity (61–97% ee). Catalyst **V** gave the desired product **3a** with high enantioselectivity (97%,

Table 1, entry 5), whereas diastereomeric catalyst IV afforded product 3a in lower enantioselectivity (-9% ee, Table 1, entry 4), as well as a reversal absolute configuration. These results demonstrated that the central and axial chiral elements in chiral amine-thiourea catalyst V are matched, enhancing the stereochemical control, whereas the two chiral elements in catalyst IV are mismatched. When 3-phenyloxindole 1f was used as substrate in the presence of catalyst V in dichloromethane, the corresponding Michael adduct 3f was obtained in 89% yield, but moderate selectivity (81% ee, Table 1, entry 10). To improve the enantioselectivity for 3-phenyl oxindole 1f, the catalytic effects of other catalysts III, IV, and VIII¹¹ on the conjugate addition of 3-phenyloxindole 1f to 1,1bis(benzenesulfonyl)ethylene (2) were examined under several solvents (Table 1, entries 9 and 11–15). Binaphthyl-modified squaramide catalyst VIII turn out to be an excellent catalyst (95% ee, Table 1, entry 12). Based on the exploratory studies, we decided to select binaphthyl-modified thiourea catalyst V for 3-alkyl-substituted oxindoles and binaphthyl-modified squaramide catalyst VIII for 3aryl oxindoles for further optimization of reaction conditions. Absolute configuration of 3 was determined by comparison of the optical rotation and chiral HPLC data with the literature values.⁷

To examine the generality of the catalytic enantioselective conjugate addition reaction of 3-alkyl-substituted oxindoles with vinyl sulfone in the presence of a binaphthyl-modified thiourea-tertiary amine catalyst V, we studied the addition of various 3-alkyl-substituted oxindoles 1a-e to 1,1-bis(benzenesulfonyl)ethylene (2). As can be seen in Table 2, the corresponding products 3a-e were obtained in high yields (80–92%) and excellent enantioselectivities (91–97%). We then examined the catalytic enantioselective conjugate addition reaction of 3-aryl-substituted oxindoles 1f-l with 1,1-naphthyl-modified squaramide catalyst VIII.¹² As shown in Table 3, high to excellent

Table 2 Variation of 3-Alkyl-Substituted Oxindoles

^a Isolated yield.

^b Enantiomeric excess was determined by HPLC analysis using Chiralpak IA (for **3a,e**), AD-H (for **3c–d**), IC (for **3b**) columns. yields (80–95%) and excellent enantioselectivities (up to 99%) were observed for different substitution patterns on the aryl group at C3. Both electron-withdrawing and electron-donating substrates on the C3 aryl group gave excellent results.

^a Isolated yield.

^b Enantiomeric excess of **3f–l** was determined by HPLC analysis using Chiralcel OD-H (for **3f–j**) and Chiralpak IB (for **3k–l**) columns.

In conclusion, we have developed a highly efficient catalytic enantioselective conjugate addition reactions of both 3-alkyl- and 3-aryl-substituted oxindoles 1a-1 to 1,1-bis(benzenesulfonyl)ethylene (2) using binaphthyl-modified bifunctional catalysts V and VIII. The desired Michael products were obtained in good to high yields, and excellent enantioselectivities (up to 99% ee) were observed for all the substrates examined in this work. We believe that this method provides a practical entry for the preparation of synthesis of medicinally useful chiral 3,3-disubstituted oxindoles. Further study of these bifunctional organocatalysts in other asymmetric reactions is under investigation.

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) founded by the Ministry of Education, Science and Technology (2010-0002488).

References and Notes

 For selected reviews, see: (a) Marti, C.; Carreira, E. M. *Eur.* J. Org. Chem. 2003, 2209. (b) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945. (c) Galliford, C. V.; Scheidt, K. A. *Angew. Chem. Int. Ed.* **2007**, *46*, 8748. (d) Trost, B. M.; Brennan, M. K. *Synthesis* **2009**, 3003.

- (2) For reviews, see: (a) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945. (b) Galliford, C. V.; Scheidt, K. A. Angew. Chem. Int. Ed. 2007, 46, 8748. (c) Lin, H.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2003, 42, 36.
 (d) Rahman, A. U.; Basha, A. Indole Alkaloids; Harwood Academic Publishers: Amsterdam, 1997. (e) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381.
- (3) (a) Mouri, S.; Chen, Z.; Mitsunuma, H.; Furutachi, M.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 1255. (b) Kato, Y.; Furutachi, M.; Chen, Z.; Mitsunuma, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 9168. (c) Tomita, D.; Yamatsugu, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 6946. (d) Linton, E. C.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 16162. (e) Kundig, E. P.; Seidel, T. M.; Jia, Y.-X.; Bernardinelli, G. Angew. Chem. Int. Ed. 2007, 46, 8484. (f) Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem. Int. Ed. 2006, 45, 3353. (g) Dounay, A. B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman, L. E.; Pfeifer, L. A.; Weiss, M. M. J. Am. Chem. Soc. 2003, 125, 6261. (h) Trost, B. M.; Frederiksen, M. U. Angew. Chem. Int. Ed. 2005, 44, 308. (i) Trost, B. M.; Zhang, Y. Chem. Eur. J. 2010, 16, 296. (j) Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2007, 129, 14548. (k) Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura, Y.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127, 10164. (1) Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2764. (m) Jia, Y.-X.; Hillgren, J. M.; Watson, E. L.; Marsden, S. P.; Kundig, E. P. Chem. Commun. 2008, 4040. (n) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402. (o) Trost, B. M.; Czabaninuk, L. C. J. Am. Chem. Soc. 2010, 132, 15534.
- (4) (a) Bui, T.; Syed, S.; Barbas, C. F. III. J. Am. Chem. Soc. 2009, 131, 8758. (b) Galzerano, P.; Bencivenni, G.; Pesciaioli, F.; Mazzanti, A.; Giannichi, B.; Sambri, L.; Bartoli, G.; Melchiorre, P. Chem. Eur. J. 2009, 15, 7846.
 (c) Bravo, N.; Mon, I.; Companyo, X.; Alba, A.-N.; Moyano, A.; Rios, R. Tetrahedron Lett. 2009, 50, 6624. (d) Li, X.; Zhang, B.; Xi, Z.-G.; Luo, S.; Cheng, J.-P. Adv. Synth. Catal. 2010, 352, 416. (e) Li, X.; Xi, Z.-G.; Luo, S.; Cheng, J.-P. Org. Biomol. Chem. 2010, 8, 77. (f) Pesciaioli, F.; Tian, X.; Bencivenni, G.; Bartoli, G.; Melchiorre, P. Synlett 2010, 1704.
- (5) For reviews, see: (a) Simpkins, N. S. *Tetrahedron* 1990, 46, 6951. (b) Najera, C.; Yus, M. *Tetrahedron* 1999, 55, 10547.
 (c) Nielsen, M.; Jacobsen, C. B.; Holub, N.; Paixao, M. W.; Jørgensen, K. A. *Angew. Chem. Int. Ed.* 2010, 49, 2668.
 (d) Zhu, Q.; Lu, Y. *Aust. J. Chem.* 2009, 62, 95. (e) Alba, A.-N. R.; Companya, X.; Rios, R. *Chem. Soc. Rev.* 2010, *39*, 2018.
- (6) (a) Zhu, Q.; Lu, Y. Org. Lett. 2008, 10, 4803. (b) Zhu, Q.; Cheng, L.; Lu, Y. Chem. Commun. 2008, 6315. (c) Zhu, Q.; Lu, Y. Org. Lett. 2009, 11, 1721. (d) Zhu, Q.; Lu, Y. Chem. Commun. 2010, 46, 2235. (e) Li, H.; Song, J.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2005, 127, 8948. (f) Li, H.; Song, J.; Deng, L. Tetrahedron 2009, 65, 3139. (g) Moss, S.; Alexakis, A. Org. Lett. 2005, 7, 4361. (h) Quintard, A.; Bournaud, C.; Alexakis, A. Chem. Eur. J. 2008, 14, 7504. (i) Quintard, A.; Alexakis, A. Chem. Eur. J. 2009, 15, 11109. (j) Sulzer-Moss, S.; Alexakis, A.; Mareda, J.; Bollot, G.; Bernardinelli, G.; Filinchuk, Y. Chem. Eur. J. 2009, 15, 3204. (k) Quintard, A.; Belot, S.; Sebastien, M.; Marchal, E.; Alexakis, A. Chem. Commun. 2010, 927. (l) Quintard, A.; Alexakis, A. Chem. Commun. 2010, 46, 4085. (m) Landa, A.; Maestro, M.; Masdeu, C.; Puente, A.; Vera,

S.; Oiarbide, M.; Palomo, C. *Chem. Eur. J.* 2009, *15*, 1562.
(n) Liu, T.-Y.; Long, J.; Li, B.-J.; Jiang, L.; Li, R.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. *Org. Biomol. Chem.* 2006, *4*, 2097.
(o) Alba, A.-N. R.; Companyo, X.; Valero, G.; Moyano, A.; Rios, R. *Chem. Eur. J.* 2010, *16*, 5354. (p) Alemn, J.; Reyes, E.; Richter, B.; Overgaard, J.; Jørgensen, K. A. *Chem. Commun.* 2007, 3921. (q) Moteki, S. A.; Xu, S.; Arimitsu, S.; Maruoka, K. *J. Am. Chem. Soc.* 2010, *132*, 17074.

(7) Zhu, Q.; Lu, Y. Angew. Chem. Int. Ed. 2010, 49, 7753.

- (8) (a) Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897. (b) Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2093. (c) Lee, J. H.; Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779. (d) Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74, 5734. (e) Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860. (f) Kang, Y. K.; Kim, D. Y. Curr. Org. Chem. 2010, 14, 917.
- (9) (a) Moon, H. W.; Cho, M. J.; Kim, D. Y. Tetrahedron Lett.
 2009, 50, 4896. (b) Moon, H. W.; Kim, D. Y. Tetrahedron Lett.
 2010, 51, 2906. (c) Moon, H. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 291. (d) Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847.
- (10) (a) Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2091. (b) Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett 2008, 2659. (c) Jung, S. H.; Kim, D. Y. Tetrahedron Lett. 2008, 49, 5527. (d) Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759. (e) Oh, Y.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674. (f) Kwon, B. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1441. (g) Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011, 420.

- (11) For selected examples of asymmetric catalysis with chiral squaramide-derived catalysts, see: (a) Malerich, J. P.; Hagihara, K.; Rawal, V. H. *J. Am. Chem. Soc.* 2008, *130*, 14416. (b) Zhu, Y.; Malerich, J. P.; Rawal, V. H. *Angew. Chem. Int. Ed.* 2010, *49*, 153. (c) Konishi, H.; Lam, T. Y.; Malerich, J. P.; Rawal, V. H. *Org. Lett.* 2010, *12*, 2028. (d) Qian, Y.; Ma, G.; Lv, A.; Zhu, H.-L.; Zhao, J.; Rawal, V. H. *Chem. Commun.* 2010, *46*, 3004. (e) Dai, L.; Wang, S.-X.; Chen, F.-E. *Adv. Synth. Catal.* 2010, *352*, 2137. (f) Jiang, H.; Paixão, M. W.; Monge, D.; Jørgensen, K. A. *J. Am. Chem. Soc.* 2010, *132*, 2775.
- (12) Typical Procedure for the Conjugate Addition Reaction of 3-Phenyl Oxindole 1f with Vinyl Sulfone 2
 To a solution of 3-phenyl oxindole 1f (0.3 mmol, 92 mg) and catalyst VIII (0.03 mmol, 21.4 mg) in CH₂Cl₂ (1.2 mL) was added 1,1-bis(benzenesulfonyl)ethylene (2, 0.45 mmol, 138.7 mg). Reaction mixture was stirred for 6 h at r.t., concentrated, and purified by flash column chromatography (EtOAc-hexane = 1:5) to afford the Michael adduct (3f, 168 mg, 90%).

(*R*)-*tert*-Butyl 3-[2,2-bis(phenylsulfonyl)ethyl]-2-oxo-3-phenylindoline-1-carboxylate (3f)

$$\begin{split} & [\alpha]_{\rm D}{}^{27} \ 26.0 \ (c \ 0.4, \ {\rm CHCl}_3). \ ^1{\rm H} \ {\rm NMR} \ (200 \ {\rm MHz}, \ {\rm CDCl}_3): \delta = \\ & 8.07-7.97 \ ({\rm m}, 3 \ {\rm H}), \ 7.77-7.67 \ ({\rm m}, 3 \ {\rm H}), \ 7.64-7.46 \ ({\rm m}, 6 \ {\rm H}), \\ & 7.38-7.16 \ ({\rm m}, 7 \ {\rm H}), \ 4.45-4.41 \ ({\rm m}, 1 \ {\rm H}), \ 3.40-3.29 \ ({\rm m}, 2 \ {\rm H}), \\ & 1.59 \ ({\rm s}, 9 \ {\rm H}). \ ^{13}{\rm C} \ {\rm NMR} \ (50 \ {\rm MHz}, \ {\rm CDCl}_3): \delta = 175.2, \ 149.2, \\ & 141.2, \ 140.8, \ 138.0, \ 134.7, \ 134.4, \ 131.0, \ 129.3, \ 128.9, \\ & 128.8, \ 128.0, \ 126.7, \ 125.7, \ 124.6, \ 116.3, \ 84.3, \ 80.6, \ 55.2, \\ & 32.1, \ 28.0, \ {\rm HPLC} \ [n-{\rm hexane}-i-{\rm PrOH} \ (90:10), \ 254 \ {\rm nm}, \ 0.5 \\ \\ & {\rm mL/min] \ {\rm Chiralcel} \ {\rm OD-H} \ {\rm column}, \ t_{\rm R} = 18.8 \ {\rm min} \ ({\rm major}), \\ & t_{\rm R} = 23.9 \ ({\rm minor}), \ 95\% \ {\rm ee}. \end{split}$$