PREGNANE GLYCOSIDES FROM BOUCEROSIA AUCHERIANA*

TSUTOMU TANAKA, SACHIKO TSUKAMOTO and KOJI HAYASHI†

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060, Japan

(Received 5 April 1989)

Key Word Index—Boucerosia aucheriana, Asclepiadaceae, bouceroside-ANC, -ADC, -ANO, ADO, -BNO, -BDO, -BNC, -BDC, -CNO, and -CNC; D-cymarose

Abstract—Ten glycosides named bouccroside-ANC, -ADC, -ANO, -ADO, -BNO, -BDO, -BNC, -BDC, -CNO and -CNC were isolated from *Boucerosia aucheriana* and their structures deduced on the basis of the chemical and spectral evidence. The absolute configuration of cymarose, which was obtained by acidic hydrolyses of seven of the glycosides, was determined by means of HPLC analysis of its carbamoyl derivative on a chiral column as D cymarose

INTRODUCTION

In our continuing studies on the plants of Asclepiadaceae family, a large number of C/D cis-pregnane glycosides were isolated [1] Mitsuhashi and his co-workers [2] isolated two C/D cis-pregnanes, boucerin and dihydroboucerin, from Boucerosia aucheriana and in a previous paper [3], we described the isolation of four glycosides named bouceroside AI, AII, BI and BII from this plant Recently, two pregnane glycosides named caratuberside A and caratuberside B[4] were isolated from Caralluma tuberculata, a synonym of B aucheriana by Ahmad et al [4] In this paper we report the isolation and structural elucidation of 10 glycosides designated as bouceroside-ANC (1), ADC (2), -ANO (3), -ADO (4), -BNO (5), -BDO (6), -BNC (7), -BDC (8), -CNO (9), and -CNC (10) from the less polar glycoside fraction of B aucheriana. The absolute configuration of cymarose was determined by using a chiral HPLC column [5] comparison with the authentic sample

RESULTS AND DISCUSSION

A crude glycoside mixture was obtained from the chloroform-soluble portion of the methanol extract from the dried aerial part of *B aucheriana* From the less polar fractions of this crude glycoside, 10 glycosides were separated by means of normal and reversed phase gel, especially effective was silver nitrate impregnated silica gel for separating the Δ^5 and 5α -H types of aglycones.

Bouccroside-ANC (1) had the molecular formula $C_{49}H_{76}O_{15}$ on the basis of ion peaks at m/2 927 [M + Na]⁺ and 943 [M + K]⁺ in its field-desorption mass spectrum (FDMS) The 500 MHz ¹H NMR spectrum of I showed methyl signals of its aglycone moiety at $\delta 0.81$ (3H, s, 19-H), 1.23 (3H, d, J = 6.4 Hz, 21-H), and 1.38 (3H, s, 18-H) and esterified methine proton at 4.72 (1H, dd, J = 12.2, 4.4 Hz). The presence of a benzoyl ester was suggested from the UV maximum (229 nm), aromatic

= 7 3 Hz), and 8.05 (2H, d, J = 7 3 Hz) and the aromatic carbon signals (Table 1) Three anomeric protons at $\delta 4$ 59 (1H, d, J = 8 3 Hz), 477 and 483 (each 1H, dd, J = 98)2.0 Hz) and anomeric carbon signals at δ 96 1, 100 4, and 104.1 were observed The β -linkage of each sugar was revealed by the coupling constants of the respective anomeric protons in the ¹H NMR spectrum From its ¹³C NMR spectrum (Table 2), compound 1 contained two glycosilated cymaropyranosyl and a terminal 6dcoxy-3-O-methyl-allopyranosyl moleties, judging from comparison of the chemical shifts with those of known asclepiadaceous glycosides. In its ¹³CNMR spectrum. partial relaxation Fourier-transform (PRFT) measurement [6, 7] of 1 showed that 6-deoxy-3-O-methyl-allose was the terminal sugar On mild acidic hydrolysis of 1, an aglycone (11), cymarose (12), and a biose (13) were obtained. The aglycone (11) had the molecular formula $C_{28}H_{40}O_5$ on the basis of ion peak at m/z 456 (M⁺) in its FDMS From its ¹H and ¹³C NMR spectra, 11 was suggested to be 12-O-benzoyl dihydroboucerin, a previously reported compound [3] The NOE experiments supported the stereochemistry at C-17 and C-20 positions deduced from ¹³C NMR chemical shifts [8] Compound 12 was identified by spectral data and TLC comparison with the authentic sample The biose (13) was identified as asclepobiose (6-deoxy-3-O-methyl- β -D-allopyranosyl- $(1 \rightarrow 4)$ -D-cymarose) [9–11] by specific rotation, ¹³C NMR spectrum (Table 3), and behavior on TLC As glycosidation shifts [12, 13] were observed at the C-2 (-2.3), C-3 (+6.2), and C-4 (-4.2) positions of 1, the sugar morety was linked to the C-3 hydroxyl group of the aglycone Thus, I was deduced to be 12-O-benzoyl dihydroboucerin 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranoside

proton signals at δ 7 44 (2H, t, J = 7 3 Hz), 7 56 (1H, t, J

Bouceroside-ADC (2) had the molecular formula $C_{49}H_{74}O_{15}$ on the basis of an ion peak at m/z 925 [M + Na]⁺ in its FDMS. Compound 2 had the same sugar chain as 1 from its ¹H and ¹³C NMR spectra, and 6-deoxy-3-O-methyl-allose was confirmed as the terminal sugar by PRFT measurement On mild acidic hydrolysis, 2 gave 12–14. The former two compounds were identified

^{*}Part 71 in the series 'Studies on the Constituents of Asclepiadaceae Plant' For part 70 see ref [3].

[†]Author to whom correspondence should be addressed

Table 1 ¹³C NMR chemical shifts of the aglycone moleties of 1-4 and their aglycones 11 and 14

C	1	3	11	2	4	14
1	37 3	37 3	37 6	37 5	37 3	37 8
2	30 0 (-2 3)	30 0 (-2 3)	32 3	30 3 (-2 2)	30.3 (2.2)	32 5
3	767(+62)	766(+61)	70 5	774 (+62)	774 (+62)	712
4	350 (-42)	349(-43)	39 2	39 3 (-40)	393 (-40)	433
5	44 7	44 6	45 1	1397	139.7	140.6
6	29 2ª	29 2ª	29 2ª	122.4	122.5	122.0
7	28 2ª	28 2ª	28 3*	27 8ª	27 8ª	יא 27
8	40 4	40 3	40 4	36.9	37.0	37.6
9	46 7	46 7	46 7	43 9	44 ()	43.6
10	36 1	36 1	36 1	37 5	37.6	37.5
11	27 О ^ь	27 2 ^ь	27 1 ^b	26 7ª	26 71	26.84
12	79 8	79 7	79 9	79 3	79 3	79.3
13	53 4	53 4	53 4	53 3	53.4	533
14	850	84 9	85 0	851	85.2	85.2
15	32 8	32.9	32.8	33.4	33.4	33.4
16	26 5 ^b	26 6 ^b	26 6 ^b	264	26.4	26 5
17	53.1	53 1	53 1	53 1	531	53.0
18	115	115	116	11.5	11.5	11.6
19	12.2	121	123	19 5	19 5	19.7
20	70 8	70 8	70 8	70 9	70 9	70.8
21	23 6	23 8	23 7	23 7	237	237
1′	166 7	166 7	166 7	166 7	166 7	166 7
2′	1317	131.6	1317	131.6	131.6	131.6
3′	130 0	1300	1300	130.0	1301	1301
4′	128 9	128 8	128 9	128 9	128 9	1290
5'	133 2	133 3	133 3	133 3	1333	133 3
6′	128 9	128 8	128 9	128 9	128 9	129.0
7′	130 0	130 0	130 0	130.0	130.1	130.1

 ∂ value (ppm) from internal TMS in pyridine- d_5

^{a b}Values in each column may be interchangeable

(), Glycosidation shifts

by TLC comparison with the authentic samples The molecular formula of 14 was established as $C_{28}H_{38}O_5$ by its high-resolution mass spectrum (HRMS) which was two mass units less than that of 11 In addition to the presence of a benzoyl group (δ 7.45, 757, and 806), olefinic proton and carbon signals were observed at δ 5 44

(br s), and 140.6 and 122.0, respectively. Moreover the 19methyl signal at $\delta 0.80$ in the 11 was shifted to lower field at 1.01 in the spectrum of 14. Thus, compound 14 was assumed to be the Δ^5 derivative of 11, 12-O-benzoyl boucerin [3] Glycosidation shifts of the aglycone carbon signals were observed at the C-2, C-3 and C-4 positions

	1	ы	7	10		3	4	N.	6	6
cym-1	96.1	96.4			cym-1		96.4	096	96.3	96.1
7	36 9ª	36.94	37.0^{a}	36 9ª	2	37 3 ^a	37 3ª	373	376	37 2ª
3	78 2	78 1 ^b	781	78 1 ^b	3	77 8	6 11	6 11	778	780
4	83 3 ^b	83 3°	83 2 ^b	83 4°	4	82 7 ^b	82 8	82 8ª	82 8ª	82 8 ^b
5	°0 69	9 1 ^q	°0 69	p1 69	5	0 69	0'69	689	689	0 69
9	186	186	186	186	9	18.6°	18.6°	18 6 ^b	18 6 ^b	18 6°
3-OMe	588	58 8	588	58 8	3-OMe	58 8	58 8	58 8	588	58 8
cym'-1	1004	1004	1004	100.4	ole-1	101 9	101.9	101 9	101.9	101 9
5	37 3ª	37 3ª	37.4ª	37 1ª	2	37 S ^a	37 6ª	373	37.6	37 6ª
3	78,2	78 0 ^b	78 1	78 0 ^b	ŝ	79.2	79,3	79,3	79 2	79 3
4	83 4 ^b	83 4°	83 4 ⁵	83 5°	4	83 5 ^b	83 5 ^b	83 5ª	83.4ª	83 6 ^b
5	69 3*	69 ['] 34	69 3°	69 3 ^d	5	72.0	72 1	72 0	72.0	72 1
9	186	18.6	186	186	6	18 9°	18.9°	18 _. 9 ^b	18 9 ^b	18.9°
3-OMe	588	588	58 8	589	3-OMe	570	571	57.2	571	57,1
allo-1	104 2	104 2	104 2	104 2	allo-1	101 9	101 9	101 9	101 9	101 9
5	73 2	73,2	731	731	2	73 2	73 3	73 2	73 2	733
3	83 9	83,9	839	84,0	e	84,0	840	839	83 9	839
4	74.4	74 5	74 4	74,5	4	74 5	74 6	74 5	746	74,6
5	707	707	707	70,7	5	70 8	6'02	710	6 OL	71.1
9	186	186	18,6	186	9	186	186	186	186	187
3-OMe	62,1	62,1	62.0	62,2	3-OMe	620	62 0	62 0	62 0	62 0

ethyl-β-allopyra
6-deoxy-3-0-m
allo,
ole, β-oleandropyranqse
, β-cymarolyranose c
ial TMS in pyridine-d ₅ cym in may be interchangeable.
ð value (ppm) from mtern ^{a - d} Values in each colum

16 pachybiose

Table 3. ¹³C NMR chemical shifts of 13 and 16

13 asclepobiose

AUGULT	13		16
cym-1	92 5	ole-1	914
2	38 5	2	376
3	78 5	3	77.6
4	83 8	4	84 0
5	69 3	5	674
6	18 6 ^a	6	18 9ª
3-OMe	58 4	3-OMe	57.2
allo-1	104.2	allo-1	102.2
2	73 0	2	733
3	839	3	84 0
4	74 4	4	74 6
5	70 7	5	70.9
6	18 9*	6	19 2ª
3-OMe	62 1	3-OMe	62 0

 δ value (ppm) from internal TMS in pyridine- d_5 cym, β-cymaropyranose ole, β-oleandropyranose allo, 6-deoxy-3-O-methyl-β-allopyranose

*Value in each column may be interchangeable

(Table 1) Therefore, the structure of **2** was deduced to be 12-O-benzoyl boucerin 3-O-6-deoxy-3-O-methyl- β -D-allopyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranosyl-

Bouceroside-BNO (5) had the molecular formula $C_{51}H_{78}O_{16}$ on the basis of elemental analysis and FD-MS (m/z 969 [M + Na]⁺ and 946 [M]⁻) The 500 MHz ¹H NMR spectrum of 5 showed methyl signals of its aglycone moiety at $\delta 0.80$ (3H, s, 19-H) 1 12 (3H, d, J = 6.3 Hz, 21-H), 1 14 (3H, s, 18-H) and 1 93 (3H, s. 2"-H),

and two esterified methine protons at δ 476 (1H, dd, J = 122, 44 Hz) and 487 (1H, dq, J = 94, 63 Hz) Moreover, five aromatic proton signals at δ 7 44, 7 56 and 8 09 were observed From the ¹³C NMR spectrum (Table 4), the two esters were suggested as benzoyl and acetyl Three anomeric proton signals at $\delta 4.48$ (1H, dd, J = 9.8, 2.0 Hz), 4 79 (1H, d, J = 7.8 Hz) and 4 86 (1H, dd, J = 9.8. 2.0 Hz), and anomeric carbon signals at ∂ 96.0 and two 101.9 were observed Thus, compound 5 was also suggested to be a triglycoside composed of terminal 6-deoxy-3-O-methyl-allose, 12 and oleandrose from the ¹³C NMR chemical shifts On mild acidic hydrolysis of 5, an aglycone (15), 12 and a biose (16) were obtained Compound 12 was identified by TLC comparison with the authentic sample The biose (16) was identified as pachybiose [6-deoxy-3-O-methyl- β -D-allopyranosvl-(1- \rightarrow 4)- β -D-ol-eandrose] [9, 14] by specific rotation, 13C NMR spectrum (Table 3) and behaviour on TLC The aglycone (15) was suggested to be 12-O-benzoyl-20-O-acetyl dihydroboucerin [3], which was isolated from this plant, by 'H and ¹³C NMR spectra (Table 4) Though the position of the two esters had been determined by chemical methods, long-range selective proton decoupling (LSPD) measurement [15-17] of 15 gave the same conclusion (Fig. 1) In pyridine- d_5 , when the proton signal at $\partial 5$ 14 (12-H) was irradiated, the carbonyl carbon signal of the benzoyl at δ 1667 sharpened and the extent of the signal splitting was decreased simultaneously. When the proton signal at δ 5 42 (20-H) was irradiated, the carbonyl carbon signal of the acetyl at $\delta 170$ 2 sharpened and the extent of the signal splitting was decreased. As the glycosidation shifts of the aglycone carbon signals were observed at C-2 (-23), C-3 (+61) and C-4 (-40), the sugar moiety was linked to the C-3 hydroxyl group of the aglycone PRFT measurement of 5 confirmed that 6-deoxy-3-O-methyl-allose was the terminal sugar Thus compound 5 was determined as 12-O-benzoyl-20-O-acetyl dihydroboucerin 3-O-6-deoxy-3-*O*-methyl- β -D-allopyranosyl- $(1 \rightarrow 4)$ - β -D-oleandtopyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranoside

Bouceroside-BDO (6) had the molecular formula $C_{51}H_{76}O_{16}$ on the basis of the parent ion peak at m z 944 (M⁺) in its FDMS. On mild acidic hydrolysis of 6, an aglycone (17), 12 and 16 were obtained The latter two compounds were identified by TLC comparison with the authentic samples In the ¹HNMR spectrum of 17 in addition to the benzovl group at δ 7 45, 7 57 and 8 11, and the acetyl group at δ 1.97, an olefinic proton signal at δ 5 44 was observed From its ¹³C NMR spectrum (Table 4), compound 17 was deduced to be 12-O-benzoyl-20-Oacetyl boucerin [3] PRFT measurement of 6 showed that 6-deoxy-3-O-methyl-allose was the terminal sugar Thus compound 6 was deduced to be 12-O-benzoyl-20-Oacetyl boucerin 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl- $(1 \rightarrow 4)$ - β -D-oleandropyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranoside

Bouceroside-ANO (3) and -ADO (4) had the molecular formulae $C_{49}H_{76}O_{15}$ and $C_{49}H_{74}O_{15}$, respectively From their ¹³C NMR spectra (Table 2), both glycosides have Rb type sugar chain, and 6-deoxy-3-O-methyl-allose was confirmed as the terminal sugar by PRFT measurement. On mild acidic hydrolysis, compound 3 gave 11-13, and 4 gave 14, 12 and 16 respectively Compounds 11 13 and 16 were identified by TLC comparison with the authentic samples The glycosidation shifts were observed at the C-2, C-3 and C-4 positions of each aglycone (Table 1) Thus, compound 3 was deduced to be 12-O-bep-oxl

С	5	7	15	6	17
1	37 3	37 2	37 5	37 6	37 5
2	300(-2.3)	300(-23)	32 3	30.3 (-22)	32 5
3	766(+61)	766 (+61)	70 5	77.2 (+61)	711
4	348(-43)	348(-43)	39 1	39.1 (-4.2)	43 3
5	44 6	44 5	450	139 7	140 7
6	29 1ª	29 1ª	29 2ª	122 8	122 5
7	28 1ª	28 1ª	28 2ª	27 7	278
8	40.8	40 9	40 9	37 6	37.6
9	46 5	46 5	46 6	43 9	43 8
10	36 1	36 0	36 1	37 6	37 5
11	26.8 ^b	26 8 ^b	26 9 ^b	26 7ª	26 7ª
12	79 7	79 8	79 7	79 6	79 3
13	52 5	52 5	52 5	52 3	52 4
14	85 5	856	856	85 7	858
15	32.2	32.2	32 3	32 7	32 5
16	25 9 ^b	26 0 ^b	26 0 ^b	25 5°	25 6ª
17	50 7	50 7	50 7	50 6	50 7
18	10 3	10 3	10 3	10 3	10 2
19	121	121	12 3	194	194
20	73 9	74.0	74 0	74 0	73 9
21	193	194	194	19.4	194
1′	166 7	166 7	166 7	166 6	166 7
2′	131 6	1317	1317	131 6	1316
3'	130 1	130 1	130 1	1300	130 1
4′	128 9	128 9	128 9	128 9	128 9
5'	133 4	133 3	133 4	133 4	133 4
6'	128 9	128 9	128 9	128 9	128 9
7'	1301	130 1	1301	1300	1301
1″	170 2	170 3	170 2	170 2	170 2
2″	216	21 6	21 6	21 6	21 6

Table 4 ¹³C NMR chemical shifts of aglycone moieties of 5, 6, and 7, and their aglycones 15 and 17

 δ value (ppm) from internal TMS in pyridine- d_5 $^{\rm a}$ bValues in each column may be interchangeable.

(). Glycosidation shifts

Nondecouple and LSPD spectra

Fig 1

dihydroboucerin 3-O-6-deoxy-3-O-methyl- β -D-allopyranosyl- $(1 \rightarrow 4)$ - β -D-oleandropyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranoside, and compound 4 to be 12-O-benzoyl boucerin 3-O-6-deoxy-3-O-methyl- β -D-allopyranosyl- $(1 \rightarrow 4)$ - β -D-oleandropyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranoside

Bouceroside-BNC (7) had the same molecular formula $C_{51}H_{78}O_{16}$ as 5 on the basis of ion peak at m/z 969 [M $+Na]^{+}$ in its FDMS From its ¹³CNMR spectrum (Tables 2 and 4), compound 7 contained 16 as the aglycone molety and an Ra type sugar chain PRFT measurement of 7 indicated that 6-deoxy-3-O-methylallose was the terminal sugar. On mild acidic hydrolysis, 7 gave 16, 12 and 13. which were identified by TLC comparison with the authentic samples The glycosidation shifts of the aglycone carbons were observed at C-2 (-23), C-3 (+61) and C-4 (-4.3) Thus compound 7 was deduced to be 12-O-benzoyl-20-O-acetyl dihydroboucerin 3-O-6-deoxy-3-O-methyl- β -D-allopyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranoside

Bouceroside-BDC (8) had the molecular formula C51H76O16 on the basis of elemental analysis and its fast atom bombardment mass spectrum (FABMS) (m/z 967 $[M + Na]^{+}$ The 500 MHz ¹H NMR spectrum of 8 exhibited methyl signals of the aglycone moiety at $\delta 1.00$ (3H, s, 19-H), 1 14 (3H, d, J = 6 3 Hz, 21-H), 1 17 (3H, s, 18-H) and 1 97 (3H, s, 2"-H) and two esterified methine protons at $\delta 4$ 81 (1H, dd, J = 122, 44 Hz, 12-H) and 4.91 (1H, dq, J = 9.7, 6.3 Hz, 20-H). The presence of a benzovl group was suggested from the UV maximum (230 nm) and five aromatic protons at δ 7 45 (2H, t, J = 7 3 Hz), 7 58 (1H, t, J = 7 3 Hz) and 8.11 (2H, d, J = 7 3 Hz) In addition, an olefinic proton signal was seen at $\delta 544$ (br s) Three anomeric proton signals at $\delta 4$ 59 (1H, d, J = 7.8 Hz), 4 76 and 4.85 (each 1H, dd, J = 9.8, 2.0 Hz) and methoxy methyl signals at δ 3.42, 3.45 and 3.66 (each 3H, s) were shown in its ¹H NMR spectrum On mild acidic hydrolysis, compound 8 gave 17, 12 and 13, which were identified by TLC comparison with the authentic samples Thus, compound 8 was presumed to be 12-O-benzoyl-20-Oacetyl boucerin 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranoside

Bouceroside-CNO (9) and -CNC (10) had the same molecular formula $C_{56}H_{80}O_{16}$ From their ¹³CNMR spectra (Table 2 and 5), they contain the same aglycone morety as boucerogenin II (18) [3], but differ from one another in the sugar morety On mild acidic hydrolysis, compound 9 gave 18, 12 and 16, while 10 gave 18, 12 and 13 Thus, compound 9 was deduced to be boucerogenin II 3-O-6-deoxy-3-O-methyl- β -D-allopyranosyl-(1 \rightarrow 4)- β -Doleandropyranosyl-(1 \rightarrow 4)- β -D-cymaropyranoside, and 10 to be boucerogenin II 3-O-6-deoxy-3-O-methyl- β -Dallopyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl-(1 \rightarrow 4)- β -Dcymaropyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl-(1 \rightarrow 4)- β -D-

The chirality of cymarose, which was obtained by acidic hydrolyses of glycosides 1, 3–7 and 9, was deduced to be D-series by means of HPLC, using a chiral column (SUMIPAX OA-4100) [5].

EXPERIMENTAL

Mps uncorr ¹H NMR spectra were run at 270 and 500 MHz with TMS as the int standard in CDCl₃ or pyridine- d_5 soln, ¹³C NMR spectra were performed at 67.5 and 22.5 MHz in

 Table 5
 ¹³C NMR chemical shifts of aglycone moieties of 9 and 10, and their aglycone 18

C	9	10	18
1	37 6	37 3	37 8
2	300 (-22)	301(-21)	32.2
3	767(+63)	765(+61)	70 4
4	349 (-41)	348 (-42)	39 0
5	44 7	44 6	44 7
6	29 1ª	29 2ª	29.1*
7	28 1ª	28 2ª	28 1ª
8	40 4	40 5	40 5
9	46 6	46 5	46 5
10	36 1	36 1	36 0
11	26 9 ^b	26 9 ^b	26 9 ^ь
12	79 0	79 0	78 9
13	53 0	52.9	52 8
14	85 7	857	857
15	32.2	32.1	32.2
16	25 5 ^b	25 6 ^b	25 5 ^b
17	50.4	50 3	50 2
18	10 3	10 3	10.3
19	12.1	120	12.1
20	74 8	74 9	74 8
21	196	19 7	196
1	166 8	166 8	166 7
1″	166 1	166 1	166 0
2′	131.8	1317	1317
2″	1317	131.6	1317
3′	130 1	130 2	1301
3‴	129 9	1300	1298
4′	129 1	1291	129 1
4′′	128 8	128 9	128 8
5'	133 4	133 5	133 4
5″	133 0	1331	133 4
6'	1291	1291	1291
6″	128 8	128 8	128 8
7′	130.1	130.2	1301
7″	129 9	1300	129 8

 δ value (ppm) from internal TMS in pyridine- d_5

^{a b}Values in each column may be interchangeable

(), Glycosidation shifts

pyridine- d_5 soln UV spectra were obtained in EtOH IR spectra were recorded in CHCl₃ CC were carried out on Wakogel C-100 and C-200 for normal phase, and Lobar column LiChroprep RP-8 (40–63 μ m) for reversed phase HPLC analyses were performed with a Waters A-4000 pump and 440 absorbance detector at 254 nm using SUMIPAX OA-4100 (5 μ , ϕ 4 mm 1 d × 25 cm) (Sumitomo Chemical Co Ltd) TLC was carried out on a precoated plate Kieselgel 60 F₂₅₄, Merck with the following solvent systems R_{f_1} , MeOH–CHCl₃ (1 9), R_{f_2} , hexane Me₂CO (1 1), R_{f_1} , H₂O–MeOH–CHCl₃ (1 3 15, lower layer), R_{f_4} , Me₂CO–Et₂O (1 3) Abbreviations used for sugars in this section are as follows cym cymarose, ole, oleandrose, allo, 6-deoxy-3-O-methyl-allose

Plant material Boucerosia aucheriana used in this research was collected and identified by Prof N A Quazilbash of Peshawar University, Pakistan

Extraction and isolation Dried and powdered aerial parts of B aucheriana (420 g) were extracted with MeOH and concd to give an extract (38 g) which was re-extracted with CHCl₃ The CHCl₃

soluble fraction was dissolved in CHCl₃ (80 ml) and the soln poured into hexane (1700 ml) The insoluble portion corresponded to a crude glycoside mixture (109 g) which was chromatographed on Wakogel C-100 (100 g) with solvents of increasing polarity from 0 to 30% MeOH-CHCl₃ into 6 fractions Fraction 2 (3 74 g) eluated with 2 5% MeOH in CHCl₃ was rechromatographed on Wakogel C-200 with 2% MeOH-CHCl₃ to separate fraction 2-2 (168 g, a mixture of 5-10) and fraction 2-3 (1.47 g, a mixture of 1-4) Rechromatography of the fraction 2-3 on silica gel with 25% MeOH-CHCl₃ and increasing polarity from hexane-Me₂CO (2 1) to hexane-Me₂CO (1 2), and then on reversed-phase gel with H₂O-MeOH (3 17) to separate fraction A (155 6 mg 1 and 2) and fraction B (100 8 mg 3 and 4) Fraction A and B were each chromatographed on AgNO₃-silica gel with hexane-Me₂CO (2 1 and 3 2) to afford glycosides, 1 (34 2 mg), 2 (45 0 mg), 3 (19 4 mg) and 4 (22 5 mg), respectively Rechromatography of fraction 2-2 on silica gel with 4% MeOH in CHCl₃ and hexane-Me₂CO (1 1 and 3.2), and then on reversed-phase gel with H₂O-MeOH (3.17 and 1 4) to separate fraction C (1766 mg 5 and 6), fraction D (652 mg 7 and 8) and fraction E (767 mg 9 and 10) Each of fraction C, D and E was chromatographed on AgNO₃-silica gel with hexane-Me₂CO (5:2) to afford the following glycosides 5 (65 3 mg) and 6 (30 0 mg) from fraction C, 7 (15 7 mg) and 8 (5.2 mg) from fraction D, 9 (255 mg) and 10 (70 mg) from fraction E

 R_f value: 1 (R_{f_1} ; 0 56, R_{f_2} , 0 42), 2 (R_{f_1} , 0 56, R_{f_2} , 0 42), 3 (R_{f_1} , 0.56, R_{f_2} ; 0 42), 4 (R_{f_1} , 0 56, R_{f_2} , 0 42), 5 (R_{f_1} , 0 70, R_{f_2} , 0 48), 6 (R_{f_1} ; 0.70, R_{f_2} , 0 48), 7 (R_{f_1} , 0 70, R_{f_2} , 0 48), 8 (R_{f_1} , 0 70, R_{f_2} , 0 48), 9 (R_{f_1} , 0 74, R_{f_2} , 0.50), 10 (R_{f_1} , 0 74, R_{f_2} ; 0.50).

Bouceroside-ANC (1) Amorphous powder; mp 138 5–142 5° $[\alpha]_D - 3.2^{\circ}$ (CHCl₃, c 1 02) UV λ_{max}^{EIOH} nm (log ε). 281 (2 95), 278 (3 07), 229 (4 12) IR $\nu_{max}^{CHCl_3}$ cm⁻¹ 3400, 1710, 1600, 1580, 1275. FDMS m/z 943 $[M + K]^+$, 927 $[M + Na]^+$ ¹H NMR (500 MHz, CDCl₃) δ 0 81 (3H, s, 19-H), 1 22 (3H, d, J = 6 3 Hz, 21-H), 1.38 (3H, s, 18-H), 3 42, 3 44, 3.66 (each 3H, s, 3-OMe of sugar motety), 4 59 (1H, d, J = 8 3 Hz allo-1-H), 4 72 (1H, dd, J = 12 2, 4 4 Hz, 12-H), 4 77, 4.86 (each 1H, dd, J = 9 8, 2 0 Hz, cym-1-H), 7.44 (2H, t, J = 7 3 Hz, 4',6'-H), 7.56 (1H, t, J = 7 3 Hz, 5'-H), 8 05 (2H, d, J = 7 3 Hz, 3',7'-H) ¹³C NMR spectrum see Tables 1 and 2

Acidic hydrolysis of 1 A soln of 1 (280 mg) in MeOH (6 ml) was treated with 0.1 M H_2SO_4 (2 ml), and the mixture kept at ca 60° for 30 min, then H₂O (6 ml) was added and whole concd to 6 ml. The soln was warmed at 60° for further 30 min, then the soln was extracted with Et₂O (15 ml). The Et₂O layer was washed with 5% NaHCO₃ (10 ml) and satd NaCl (10 ml), then evapd to give a syrup, which was chromatographed on silica gel with hexane-Me₂CO (2 1) to afford 11 (4 4 mg). Compound 11 $(R_{f_1}, 0.51, R_{f_2}, 0.51)$, an amorphous powder, mp 128 5–133.5° $[\alpha]_{\rm D} - 32^{\circ}$ (CHCl₃, c 0 30) UV $\lambda \frac{\text{ErOH}}{\text{max}}$ nm (log ε) 281 (3 05), 273 (3.16), 229 (4 24) IR $\nu \frac{\text{CHCl}}{\text{max}}$ cm⁻¹ 3400, 1710, 1600, 1580, 1275 FD-MS m/z 456 [M]⁺. ¹H NMR (500 MHz, CDCl₃) δ 0.83 (3H, s, 19-H), 1.23 (3H, d, J = 6 8 Hz, 21-H), 1.39 (3H, s, 18-H), 3 61 (1H, m, 3-H), 3 83 (1H, dq, J = 8 4, 6.3 Hz, 20-H) 4 72 (1H, dd, J= 12.2, 4.4 Hz, 12-H), 7 45 (2H, t, J = 7.8 Hz, 4',6'-H), 7 57 (1H, t, J = 7.8 Hz, 5'-H), 8 06 (2H, d, J = 7.8 Hz, 3',7'-H) ¹³C NMR: see Table 1 The aq. layer was neutralized with satd $Ba(OH)_2$ The ppt was filtered off and the soln evapd to give a mixture of 12 and 13 The sugar mixture (12 and 13) was chromatographed on silica gel with $H_2O-MeOH-CHCl_3$ (1 3 18 (v/v), lower layer) to separate 12 (1 5 mg) and 13 (2 0 mg) Compound 12 (R_{f_1} ; 0.46, R_{f_2} ; 0 41); mp 67.0-71.0° FDMS m/z 162 [M]⁺ Compound 13 $(\dot{R}_{f_3}, 0.31, R_{f_4}; 0.45); [\alpha]_D + 29.8^{\circ} (H_2O, c.\bar{0.20})$ FDMS m/z.322(M⁺). ¹³C NMR see Table 3.

Absolute configuration of cymarose (12). A soln of 12 (10 mg) in

MeOH (2 ml) was allowed to react with Amberlite IR-120 (H⁺) at room temp. for 1 hr and then warmed at 60° for 5 min. After removal of the resin by filtration, the reaction mixture was evapd to give a mixture of methyl cymarosides The product was dissolved in dry toluene (0.5 ml) and allowed to react with 3,5-dinitrophenylisocyanate (a 2 mg) in the presence of dry pyridine (0.05 ml) at 60° for 1 hr, then the solvent was evapd off to afford a mixture of carbamates. Purification of the mixture was carried out by preparative TLC [solvent: hexane–EtOAc (2 1)], to collect bands with R_f 0.25 and 0 38 to yield carbamate mixtures The combined mixtures were analysed by a chiral HPLC column SUMIPAX OA-4100 (5 μ , ϕ 4 mm 1 d × 25 cm), mobile phase hexane–EtOH (40 1) flow rate 1 ml/min, monitored by absorption at 254 nm

The other cymaroses obtained from 3-7 and 9, a mixture of carbamates was prepared and analysed as described above

Bouceroside-ADC (2) Amorphous powder, mp 132 0–135.5°, $[\alpha]_{\rm D} - 12.5°$ (CHCl₃, c 1.00) UV $\lambda_{\rm max}^{\rm EtOH}$ nm (log ε) 282 (2 98), 278 (3 08), 233 (4.14). IR $\nu_{\rm max}^{\rm CHCl}$ cm⁻¹. 3450, 1700, 1600, 1580, 1280, FDMS: m/z 941 [M+K]⁺, 925 [M+Na]⁺ ⁻¹H NMR (500 MHz, CDCl₃). δ 1.01 (3H, s, 19-H), 1 22, 1 26, 1 28 (each 3H, d, J = 6.3 Hz, 6-H of sugar motety), 1 25 (3H, d, J = 6 8 Hz, 21-H), 1.41 (3H, s, 18-H), 3 42, 3.45, 3 66 (each 3H, s, 3-OMe of sugar motety), 4 59 (1H, d, J = 7 8 Hz, allo-1-H), 4 76, 4 86 (each 1H, dd, J = 9 8, 2 0 Hz, cym-1-H), 4.77 (1H, dd, J = 12 2, 4 4 Hz, 12-H), 5 44 (1H, br s, 6-H), 7.45 (2H, t, J = 7 3 Hz, 4′,6′-H), 7 57 (1H, t, J= 7.3 Hz, 5′-H), 8 06 (2H, d, J = 7 3 Hz, 3′,7′-H) ⁻¹³C NMR⁻ see Tables 1 and 2

Acidic hydrolysis of **2** A soln of **2** (32.0 mg) in MeOH (6 ml) was allowed to react in the same way as **1**, and the products separated to provide **14** (10 8 mg), **12** (1 0 mg) and **13** (3.5 mg) **14** (R_{f_1} , 0.51, R_{f_2} ; 0 51), an amorphous powder, mp 140 0–144 0°, $[\alpha]_D - 46.4^\circ$ (CHCl₃, c 1.08). UV $\lambda_{\text{hot}}^{\text{hot}}$ nm (log ε) 282 (2 90), 275 (2.96), 230 (3 92) IR $\nu_{\text{max}}^{\text{cilcl}_3}$ cm⁻¹ 3400, 1715, 1600, 1585, 1270 EIMS: m/z 454 [M]⁺, 436 [M - H₂O]⁺, 418 [M - H₂O]⁺, 322 [M - C₆H₅COOH]⁺, 105 [C₆H₅CO, base peak]⁺, 77 [C₆H₅]⁺ HREIMS: Calcd for C₂₈H₃₈O₅. 454.6094, Found 454.2718 ⁺H NMR (500 MHz, CDCl₃) δ 103 (3H, s, 19-H), 125 (3H, d, J = 68 Hz, 21-H), 141 (3H, s, 18-H), 3 54 (1H, m, 3-H), 3.85 (1H, dq, J = 9 6, 64 Hz, 20-H), 478 (1H, dd, J = 12, 44 Hz, 12-H), 5.44 (1H, br s, 6-H), 7.45 (2H, t, J = 7 3 Hz, 4',6'-H), 758 (1H, t, J = 7 3 Hz, 5'-H), 8.08 (2H, d, J = 7.3 Hz, 3',7'-H) ⁺³C NMR⁺ see Table 1

Bouceroside-ANO (3) Amorphous powder, mp 113.5–1160°, $[\alpha]_{\rm D} - 12.4^{\circ}$ (CHCl₃, c 1 02) UV $\lambda_{\rm max}^{\rm HOR}$ nm (log e) 282 (2.95), 274 (3 05), 230 (4 12) IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹ 3400, 1710, 1600, 1580, 1275 FDMS. m/z 927 [M + Na]⁺. ¹H NMR (500 MHz, CDCl₃) $\delta 0$ 82 (3H, s, 19-H), 1.22 (3H, d, J = 6.8 Hz, 21-H), 1.37 (3H, s, 18-H), 3 8, 3 44, 3.66 (each 3H, s, 3-OMe of sugar motety), 4 47 (1H, dd, J = 9 8, 2.0 Hz, ole-1-H), 4 72 (1H, dd, J = 12.2, 4 4 Hz, 12-H), 4 79 (1H, d, J = 7.8 Hz, allo-1-H), 4 86 (1H, dd, J = 9.8, 2 0 Hz, cym-1-H), 7.44 (2H, t, J = 7 3 Hz, 4'6'-H), 7.56 (1H, t, J = 7.3 Hz, 5'-H), 8 05 (1H, d, J = 7.3 Hz, 3',7'-H) ¹³C NMR see Tables 1 and 2

Actic hydrolysis of 3. A soln of 3 (152 mg) in MeOH (6 ml) was allowed to react in the same way as 1, and products were separated to provide 11 (20 mg), 12 (10 mg) and 16 (17 mg)

Bouceroside-ADO (4). Amorphous powder; mp 107 5–111 0°, $[\alpha]_{D} - 11 8°$ (CHCl₃, c 1 03) UV λ_{max}^{ErOH} nm (log e) 282 (2.87), 275 (2 97), 230 (3 90) IR $\nu_{max}^{CHCl_3}$ cm⁻¹ 3400, 1710, 1600, 1580, 1270 FDMS m/z 925 [M + Na]⁺. ¹H NMR (500 MHz, CDCl₃) δ 1 01 (3H, s, 19-H), 1.23, 1 24, 1 26 × 2 (each 3H, d, J = 6 3 Hz, 21-H and 6-H of sugar moiety), 1.41 (3H, s, 18-H), 3 38, 3.45, 3 66 (each 3H, s, 3-OMe of sugar moiety), 4 47 (1H, dd, J = 9.8, 2 0 Hz, allo-1-H), 4 76 (1H, dd, J = 12 2, 4.4 Hz, 12-H), 4 86 (1H, dd, J = 9, 1.5 Hz, cym-1-H), 5 44 (1H, br s, 6-H), 7 45 (2H, t, J = 7 8 Hz, 4', 6'-H), 7 57 (1H, t, J = 7 8 Hz, 5'-H), 8 06 (2H, d, J = 7 8 Hz, 3', 7'-H) ¹³C NMR see Tables 1 and 2

Actilic hydrolysis of 4 A soln of 4 (12 1 mg) in McOH (6 ml) was allowed to react in the same way as 1, and products were separated to provide 14 (25 mg), 12 (11 mg) and 16 (19 mg)

Bouceroside-BNO (5) Amorphous powder, mp 133 5–137 0°, $[\alpha]_{D} + 24^{\circ}$ (CHCl₃, c 102) (Found, C, 62 68, H, 825 C₅₁H₇₈O₁₆ 3/2H₂O required C, 64 69, H, 824) UV λ_{max}^{EtOH} nm (log ε) 281 (279), 275 (290), 230 (397) IR $\nu_{max}^{CHCl_3}$ cm⁻¹ 3400, 1710, 1600, 1580, 1275 FDMS m/z 946 (M⁺), 969 [M + Na]⁺ ¹H NMR (500 MHz, CDCl₃). δ 0 80 (3H, s, 19-H), 1 12 (3H, d, J = 6 3 Hz, 21-H), 1 14 (3H, s, 18-H), 1 23 (3H, d, J = 6 3 Hz, 6-H of sugar moiety), 1 26 (6H, d, J = 6 3 Hz, 6-H of sugar moiety), 1 93 (3H, s, 2"-H), 3 39, 3 42, 3 66 (each 3H, s, 3-OMe of sugar moiety), 3 55, 3 56, 3 87 (each 1H, dq, J = 9 4, 6 3 Hz, 5-H of sugar moiety), 4 48 (1H, dd, J = 9 8, 2 0 Hz, ole-1-H), 4 76 (1H, dd, J = 122, 4 4 Hz, 12-H), 4 79 (1H, d, J = 7 8 Hz, allo-1-H), 4 86 (H, dd, J = 9 8, 2 0 Hz, cym-1-H), 4 87 (1H, dq, J = 9 3 Hz, 5'-H), 8 09 (2H, d, J = 7 3 Hz, 3',7'-H) ¹³C NMR see Tables 2 and 4

Acidic hydrolysis of 5. A soln of 5 (47 1 mg) in MeOH (6 ml) was allowed to react in the same way as 1, and the products sepd to provide 15 (22 6 mg), 12 (3 1 mg) and 16 (5 0 mg) Compound 15 (R_{f_1} , 0.61, R_{f_2} , 0.52), amorphous powder, mp 118 5–123 0°, $[\alpha]_{D} + 80^{\circ}$ (CHCl₃, c 0 50) UV $\lambda _{max}^{\text{EtOH}}$ nm (log ε) 281 (2 73), 275 (2 77), 229 (3 83) IR $v_{max}^{CHCl_3}$ cm⁻¹ 3400, 1715, 1600, 1580, 1275 FDMS m/z 498 (M⁺) ¹H NMR (270 MHz, CDCl₃) δ0 82 (3H, s, 19-H), 1 12 (3H, d, J = 6 2 Hz, 21-H), 1 15 (3H, s, 18-H), 1 94 (3H, s, 2"-H), 3 61 (1H, m, 3-H), 4 76 (1H, dd, J = 12 2, 4 4 Hz, 12-H), $4\,88\,(1H, dq, J = 9, 6\,2\,Hz, 20\text{-H}), 7\,45\,(2H, t, J = 7\,3\,Hz, 4', 6'\text{-H}),$ 7 58 (1H, t, J = 7 3 Hz, 5'-H), 8 10 (2H, d, J = 7 3 Hz, 3',7'-Hz), (270 MHz, pyridine) δ 0 82 (3H, s, 19-H), 1 16 (3H, d, J = 6 Hz. 21-H), 1 50 (3H s, 18-H), 2 00 (3H, s, 2"-H), 3 83 (1H, m, 3-H), 5 12 (1H, dd, J = 122, 44 Hz. 12-H), 542(1H, dq, J = 94, 6 Hz. 20-H), 7 54 (2H, t, J = 70 Hz, 4',6'-H), 7 62 (1H, t, J = 70 Hz, 5'-H), 8 44 (2H, d, J = 7.0 Hz, 3',7'-H) Compound 16 $[\alpha]_D - 10.0^{\circ}$ (H₂O, c0 47), FDMS m/z 322 [M⁺], ¹³C NMR see Table 3

Bouceroside-BDO (6) Amorphous powder, mp 135 5–139 0°, $[\alpha]_D = 210^{\circ}$ (CHCl₃, c 1 05) UV r_{max}^{EtOH} nm (log e) 278 (3 04), 272 (3 16), 230 (4 17) IR r_{max}^{CHCl} cm⁻¹ 3400, 1710, 1600, 1580, 1275 FDMS m/z 944 [M⁺] ⁻¹H NMR (500 MHz, CDCl₃) δ 1 00 (3H, s. 19-H), 1 13 (3H, d, J = 6 3 Hz, 21-H), 1 17 (3H, s, 18-H), 1 23 (3H, d, J = 6 3 Hz, 6-H of sugar moiety), 1 26 (6H, d, J = 6 3 Hz, 6-H of sugar moiety), 1 97 (3H, s, 2"-H), 3 39, 3 45, 3 66 (each 3H, s. 3-OMe of sugar moiety), 3 87 (1H, dq, J = 9 8, 6 3 Hz, 5-H of sugar moiety), 4 48 (1H, dd, J = 9 8, 2 0 Hz, ole-1-H), 4 79 (1H, dd, J = 7 8 Hz, allo-1-H), 4 80 (1H, dd, J = 12 2, 4 4 Hz, 12-H), 4 86 (1H, dd, J = 9, 1 5 Hz, cym-1-H), 4 91 (1H, dq, J = 9 8, 6 3 Hz, 20-H), 5 44 (1H, br s, 6-H), 7 45 (2H, t, J = 7 3 Hz, 4',6'-H), 7 57 (1H, t, J = 7 3 Hz, 5'-H), 8 11 (2H, d, J = 7 3 Hz, 3', 7'-H) ⁻¹³C NMR see Tables 2 and 4

Acidic hydrolysis of **6** A soln of **6** (36 5 mg) in MeOH (6 ml) was allowed to react in the same way as **1**, and the products sepd to provide **17** (8 2 mg), **12** (2 0 mg) and **16** (4 2 mg) Compound **17** (R_{f_1} , 0 61, R_{f_2} , 0 52), amorphous powder, mp 120 0–123 5⁷ [α]_D – 10 3° (CHCl₃, c 0 31) UV λ_{max}^{FIOH} mm (log ϵ) 281 (2 68), 274 (3 01), 228 (4 14) IR $\nu_{max}^{CHCl_3}$ cm⁻¹ 3400, 1715, 1600, 1580, 1275 EIMS m/z 496 [M⁺], 374, 314 296, 105 [C₆H₅CO, base peak]⁺ ¹H NMR (270 MHz, CDCl₃) δ 1 01 (3H, s, 19-H), 1 13 (3H, d, J = 6 2 Hz, 21-H), 1 18 (3H, s, 18-H), 1 98 (3H, s, 2"-H), 3 53 (1H, m, 3-H), 4 81 (1H, dd, J = 12, 44 Hz, 12-H), 4 91 (1H, dg, J = 9, 62 Hz, 20-H), 5 43 (1H, br s, 6-H), 7 45 (2H, t, J = 7 3 Hz, 4'6'-H), 7 59 (1H, t, J = 7 3 Hz, 5'-H), 8 11 (2H, d, J = 7 3 Hz, 3',7'-H) ¹³C NMR see Table 4

Bouceroside-BNC (7) Amorphous powder, mp 138 5–141 0°, $[\alpha]_D + 185$ (CHCl₃, c 1 03) UV λ_{max}^{110H} nm (log *v*) 281 (2 69), 274 (3.04), 230 (4 14) IR $\nu_{max}^{CHCl_3}$ cm⁻¹ 3400, 1715, 1600, 1580, 1275 FDMS *m/z* 946 [M]⁺, 969 [M + Na]⁺ ¹H NMR (500 MHz. CDCl₃) $\delta 0$ 80 (3H, s, 19-H), 1 12 (3H, d, J = 6.3 Hz, 21-H), 1 14 (3H, s, 18-H), 1 22, 1 27, 1.28 (each 3H, d, J = 6.3 Hz, 6-H of sugar motety), 1 92 (3H, s, 2"-H), 3 42, 3 44, 3 66 (each 3H, s, 3-OMe of sugar motety), 4 59 (1H, d J = 7.8 Hz, alto-1-H), 4 76 (1H, dd, J = 12 2, 44 Hz, 12-H), 4 77, 4 85 (each 1H, dd, J = 9 8, 2 0 Hz, cym-1-H), 4 88 (1H, dq, J = 9 2, 6 3 Hz, 20-H), 7 44 (2H, t, J = 7 8 Hz, 4',6'-H), 7 57 (1H, t, J = 7 8 Hz, 5'-H), 8 09 (2H, d, J = 7 8 Hz, 3',7'-H) ¹³C NMR see Tables 2 and 4

Acidic hydrolysis of 7 A soln of 7 (151 mg) in MeOH (6 ml) was allowed to react in the same way as 1, and the products were separated to provide 15 (31 mg), 12 (11 mg) and 13 (25 mg)

Bouceroside-BDC (8) Amorphous powder. mp 103 5–106 0°, $[\alpha]_{\rm D} + 21^{\circ}$ (CHCl₃, c 0 32) (Found C. 61 18, H. 797 C₅₁H₇₆O₁₆ 3/2H₂O required C, 64 89, H, 8 11) UV $\lambda_{\rm max}^{\rm EtOH}$ nm (log ι) 281 (2 57). 274 (2 65), 230 (3 75) IR $\nu_{\rm max}^{\rm CHC1}$ cm⁻¹ 3400, 1715, 1600, 1580, 1280 FABMS *m*,*z* 967 [M + Na]⁺ ¹H NMR (500 MHz, CDCl₃) δ 1 00 (3H, s, 19-H), 1 14 (3H, *d*, *J* = 6 3 Hz, 21-H), 1 17 (3H, s, 18-H), 1 22, 1 27, 1 28 (each 3H, *d*, *J* = 6 3 Hz, 6-H of sugar motety), 1 97 (3H, s, 2 '-H), 3 42, 3 45, 3 66 (each 3H, s, 3-OMe of sugar motety), 3 85, 3 91 (each 1H, *dq*, *J* = 93, 6 3 Hz, 5-H of sugar motety), 4 59 (1H, *d*, *J* = 7 8 Hz, allo-1-H), 4 76 (1H, *dd*, *J* = 9 8, 2 0 Hz, ole-1-H), 4 81 (1H, *dd*, *J* = 12 2, 4 4 Hz, 12-H), 4 85 (1H, *dd*, *J* = 9.1 5 Hz, cym-1-H), 4 91 (1H, *dq*, *J* = 9 7, 6 3 Hz, 20-H), 5 44 (1H, br s, 6-H), 7 45 (2H, *t*, *J* = 7 3 Hz, 4',6'-H), 7 58 (1H, *t*, *J* = 7 3 Hz, 5'-H), 8 11 (2H, *d*, *J* = 7 3 Hz, 3',7'-H)

Actdic hydrolysis of 8 A soln of 8(14 mg) in MeOH (3 ml) was allowed to react in the same way as 1, and the products (17, 12 and 13) were identified by TLC comparison with the authentic samples

Bouceroside-CNO (9) Amorphous powder, mp 143 5–147 0', $[\alpha]_D = 75^{\circ}$ (CHCl₃, c 0 96) UV $/_{max}^{110H}$ nm (log a) 282 (3 40), 275 (3 46), 228 (4 60) IR $v_{max}^{CHCl_3}$ cm $^{-1}$ 3400, 1715, 1600, 1580, 1275 FDMS m/z 1031 [M + Na] $^{\circ}$. 1008 [M] $^{+}$ ⁻¹H NMR (500 MHz, CDCl₃) $\delta 0$ 78 (3H, s, 19-H), 1 15 (3H, s, 18-H), 1 23 (3H, d, J = 6 3 Hz, 21-H), 3 38, 344, 3 66 (each 3H, s, 3-OMe of sugar motety), 3 55, 3 87 (each 1H, dq, J = 9 8, 6 3 Hz, 5-H of sugar motety), 4 47 (1H. dd, J = 9 8, 2 0 Hz, ole-1-H), 4 79 (1H, d, J = 7 8 Hz, allo-1-H), 4 85 (1H, dd, J = 9 8, 2 0 Hz, cym-1-H), 4 91 (1H, dd, J = 12 2, 4 4 Hz, 12-H), 5 25 (1H, dq, J = 9 8, 6 3 Hz, 20-H), 7 21, 7 44 (each 2H, t, J = 7 8 Hz, 4',6' and 4'',6''-H), 7 48, 7 61 (each 1H, t, J = 7 8 Hz, 5 and 5''-H), 7 83, 8 06 (each 2H, d, J = 7 8 Hz, 3',7' and 3'' 7''-H) $^{-13}$ C NMR see Tables 2 and 5

Acidic hydrolysis of **9** A soln of **9** (20 3 mg) in MeOH (6 ml) was allowed to react in the same way as **1**, and the products sepd to provide **18** (6 5 mg), **12**, (1 5 mg) and **16** (3 6 mg) Compound **18** (R_{f_1} , 0 65. R_{f_2} , 0 58) amorphous powder, mp 133 5–137 5°, [α]_D – 5 7' (CHCl₃, c 0 65) UV i_{max}^{FioH} nm (log ϵ) 281 (3 15), 278 (3 23), 260 (3 26), 256 (3 35), 229 (4 35) IR $v_{max}^{CHCl_3}$ cm⁻¹ 3400, 1715, 1600, 1580, 1275 EIMS m/z 438 [M – C₆H₅COOH] ⁺ 316 [438 – C₆H₅COOH], 298 [316 – H₂O], 105 [C₆H₅CO, base peak]⁺ ⁻¹H NMR (270 MHz, CDCl₃) ∂ 0 79 (3H, s, 19-H), 1 16 (3H, s, 18-H), 1 23 (3H, d, J = 6 3 Hz, 21-H), 3 60 (1H, m, 3-H), 4 93 (1H, dd, J = 12 2, 4 4 Hz, 12-H), 5 26 (1H, dq, J = 9 8, 6 3 Hz, 20-H), 7 21, 7 45 (each 2H, t, J = 7 7 Hz, 4',6' and 4'',6''-H), 7 50, 7 65 (each 1H, t, J = 7 7 Hz, 5' and 5''-H), 7 84, 8 06 (each 2H, d, J = 7 7 Hz, 3'.7' and 3'',7' -H) ⁻¹³C NMR see Table 5

Bouceroside-CNC (10) Amorphous powder, mp 114 0–117 5°, $[\alpha]_{\rm D} + 8^{\circ}$ (CHCl₃, $\epsilon \ 0.60$) UV $\lambda_{\rm max}^{\rm HOH}$ nm (log ϵ) 281 (3 53), 273 (3.60), 228 (4 65) IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹ 3400, 1715, 1610, 1590, 1280 FABMS *m/z* 1031 [M + Na], ¹H NMR (270 MHz, CDCl₃) $\delta 0.78$ (3H, s, 19-H), 1 14 (3H, s, 18-H), 1 22 (3H, d, J = 8.0 Hz, 21-H), 3 42, 3 44, 3 66 (cach 3H, s, 3-OMe of sugar motety), 3 84 3 91 (each 1H, dq, J = 9.8, 6 Hz, 5-H of sugar motety), 4 59 (1H, d, J = 8 Hz, allo-1-H), 4 76, 4.85 (1H, dd, J = 9.5, 2.0 Hz, cym-1-H), 4.91 (1H, dd, J = 12, 4 Hz, 12-H), 5.25 (1H, dq, J = 10, 6.4 Hz, 20-H), 7 24, 7.45 (each 2H, t, J = 8 Hz, 4',6' and 4",6"-H), 7 48, 7 62 (each 1H, t, J = 8 Hz, 5' and 5"-H), 7 83, 8.06 (each 2H, d, J = 8 Hz, 3',7' and 3",7"-H) ¹³C NMR: see Tables 2 and 5.

Actilic hydrolysis of 10. A soln of 10 (1 8 mg) in MeOH (6 ml) was allowed to react in the same way as 1, and products (18, 12 and 13) were identified by TLC comparison with the authentic samples

Acknowledgement—We thank Prof. N A Quazilbash (Peshawar University, Pakistan) for kind collection and identification of plant material. We are grateful to Prof. Emeritus H. Mitsuhashi (Hokkaido University) for giving us the opportunity of this investigation. We wish to thank Dr Ikura and Miss Misu for NMR measurements, Mr Watanabe, Mrs Fujita and Miss Kikuchi for MS measurements and Mrs Matsumoto and Miss Maeda for elemental analyses

REFERENCES

- 1. Mitsuhashi, H. and Hayashi, K (1985) Shoyakugakuzasshi 39, 1
- Nikaido, H, Shimizu, Y and Mitsuhashi, H. (1967) Chem Pharm Bull 15, 725.
- 3 Hayashi, K, Iida, I, Nakao, Yu, Nakao, Yo. and Kaneko, K (1988), Phytochemistry 27, 3919

- 4. Ahmad, V U, Usmanghani, K and Rizwani, G H (1988) J Nat Prod 51, 1092.
- 5 Tsukamoto, S, Kaneko, K and Hayashi, H (1989) Chem Pharm Bull. 97, 637
- 6 Allerhand, A and Doddrell, D (1971) J Am Chem Soc 93, 2777
- 7 Neszmelyi, A, Tori, K and Lukacs, G (1977) J. Chem Soc, Chem Commun. 613
- 8 Kimura, M., Hayashi, K., Narita, H and Mitsuhashi, H (1982) Chem Pharm Bull. 30, 3932
- 9 Allgeier, H, (1968) Helv Chim Acta 51, 311
- 10 Sawlewicz, L, Weiss, Ek and Reichstein, T (1967) Helv. Chim Acta 50, 504
- 11. Sawlewicz, L, Weiss, Ek and Reichstein, T (1967) Helv Chim Acta, 50, 530.
- 12 Kasai, R., Suzuo, M., Asakawa, J. and Tanaka, O (1977) Tetrahedron Letters 175
- 13 Seo, S, Tomita, Y, Tori, K and Yoshimura, Y (1978) J Am Chem. Soc 100, 3331
- 14 Iselin, B. and Reichstein, T (1944) Helv Chim Acta, 27, 1146
- 15 Uzawa, J and Takeuchi, S (1978) Org Magn Reson 11, 502
- 16 Uzawa, J and Uramoto, M (1979) Org Magn Reson 12, 612
- 17 Tsukamoto, S., Hayashi, K., Kaneko, K., Mitsuhashi, H., Snyckers, F. O. and Fourie, T. G. (1986) Chem. Pharm. Bull 34, 1337