The chemistry of cyclohexenediones produced by the blackleg fungus

M. Soledade C. Pedras

Abstract: Several oxidation products of metabolites produced by avirulent isolates of Phoma lingam, the blackleg fungus, are reported; in addition, the profile of metabolites common to P. lingam and P. wasabiae is clarified.

Key words: cyclohexenedione, Phoma lingam, P. wasabiae.

Résumé : On a étudié plusieurs produits d'oxydation tirés des métabolites produits par des isolats avirulents du Phoman lingam, un champignon; de plus, on a clarifié le profil des métabolites communs au P. lingam et au P. wasabiae.

H₂C

С

10 CH₃

Mots clés : cyclohexènedione, Phoma lingam, P. wasabiae.

[Traduit par la rédaction]

Recent work on the so-called weakly virulent, avirulent, or nonaggressive isolates of the blackleg fungus (Leptosphaeria maculans (Desm.) Ces. et de Not., asexual stage Phoma lingam (Tode ex Fr.) Desm.) led to the isolation of several metabolites having a cyclohexenone ring as a common structural feature (1-3). Most importantly, this work revealed an unknown relationship between P. lingam and P. wasabiae. This unforeseen relationship² was also supported by analysis of particular DNA sequences of isolates of both species (3). As a consequence of that work, it was proposed that the avirulent isolates of P. lingam be formally reclassified (4).

As part of our continuing studies of the chemistry of the blackleg fungus,³ it was important to determine the phytotoxicity of the cyclohexenones 1, 2, 5-8 produced by avirulent isolates. During the purification of these metabolites, unexpected products resulting from the slow oxidation of 5a/5b and 6 were identified. Here is reported the transformation of phomaligationes 5 and 6 and phomaligin A (7) to phomaligols 1 and 2, and the intermediates of these oxidative transformations, as well as the products of reaction of phomaligationes 5 and 6 with diazomethane. These results allow an important clarification regarding the structures of metabolites common to P. wasabiae and P. lingam. In addition, the implications of these findings on the biogenesis of the cyclohexenone-containing metabolites is discussed and the structures of metabolites common to P. wasabiae and P. lingam are noted.

Received April 11, 1996.

M.S.C. Pedras.¹ Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.

- Telephone: (306) 966-4772. Fax: (306) 966-4730. Internet: pedras@sask.usask.ca
- 2 There are more than 2000 species in the genus Phoma.
- For a recent review of blackleg chemistry see ref. 4; for a recent review of blackleg biology see ref. 5.

н

 \cap

12 .OCH₃

OCH₃

1 R=CH3; R'=OH

2 R'=CH3; R=OH

3 R=CH3; R'=OOH

4 R'=CH₃; R=OOH

 H_3C

 CH_3

OCH₃

OCH₂

8

OH

B (6), and phomaligin A (7) were obtained from culture extracts of P. lingam, as previously described (1, 3). Phomaligadiones constituted an inseparable yellowish mixture (5a:5b:6, ca. 3:1:2), homogeneous by TLC and HPLC, which

Position no.	3			4		
	δ _H	δ _c	НМВС	δ _н	δ _c	НМВС
1		172.4			171.7	
2		84.6		—	85.0	
3	_	202.8		_	206.0	
4		81.0			83.3	
5	_	192.0		_	190.8	
6	5.67, s	102.0	C-1, C-4, C-5	5.71, s	102.6	C-1, C-4, C-5
7	_	176.2			175.6	
8	2.46, ddq (6.8, 7.0, 7.0)	39.90	C-7, C-9, C-10, C-11	2.48, ddq (6.8, 7.0, 7.0)	39.95	C-7, C-9, C-10, C-11
9	1.68, m 1.47, m	26.6	C-7, C-8, C-10, C-11	1.71, m 1.48, m	26.6	C-7, C-8, C-10, C-11
10	0.94, t (7.5)	11.4	C-7, C-8, C-9, C-11	0.94, t (7.5)	11.4	C-7, C-8, C-9, C-11
11	1.13, d	16.2	C-7, C-8, C-9, C-10	1.17, d	16.4	C-7, C-8, C-9, C-10
12	3.89, s	56.9	C-1	3.90, s	57.1	C-1
13	1.60, s	21.7 ^b	C-3, C-4, C-5	1.61, s	21.7	C-3, C-4, C-5
14	1.59, s	21.9 ^b	C-1, C-2, C-3	1.57, s	23.1	C-1, C-2, C-3
OH	8.60, br s	—		8.70, br s		· ·

Table 1. NMR data^a for hydroperoxides 3 and 4 in CDCl₃.

^aData recorded at 500 (¹H NMR) and 125.8 (¹³C NMR) MHz, respectively. Values in parentheses refer to J_{HH} in Hz. ^bMay be interchanged.

decomposed to a rather complex reddish mixture on standing. To determine the products resulting from decomposition of phomaligationes, a solution of the mixture was left standing for 4 weeks at room temperature. Preparative TLC (CH₂Cl₂-MeOH, 97:3) of this mixture recovered 40% of phomaligadiones and four additional compounds. Analysis of the ¹H and ¹³C NMR spectra of each compound revealed the structures of these components: phomaligols A (1) and A₁(2), and the corresponding hydroperoxides 3 and 4. The structures of phomaligols A (1) and A_1 (2) were readily assigned by comparison of the ¹H and ¹³C NMR spectra, and the optical rotation of each compound with data obtained previously (1). The structures of the hydroperoxides 3 and 4 were assigned from analysis of the spectroscopic data (NMR in Table 1) and reduction of the hydroperoxide groups to the corresponding alcohols, as described below.

The ¹H NMR spectra of compounds 3 and 4 were similar (within 0.05 ppm) to those of the corresponding alcohols 1 and **2** (1), except for H-6 at 5.67 ppm in **3** (5.53 ppm in **1**) vs. 5.71 ppm in 4 (5.53 ppm in 2), and the D_2O exchangeable signals at 8.60 ppm in 3 (2.62 ppm in 1) vs. 8.70 ppm in 4 (3.44 ppm in **2**). The molecular formula ($C_{14}H_{20}O_7$, obtained by HRCIMS) of each new compound, together with ¹H and ¹³C NMR data, indicated that they might be hydroperoxides. Structures 3 and 4 were elucidated by analysis of the HMBC (6) and HMQC (7) spectra of each compound and by reduction of the hydroperoxide groups to the corresponding alcohols. Analysis of the HMBC and HMQC spectra of 3 and 4 indicated key correlations (Table 1) similar to those previously observed for 1 and 2 (1). For example, in compound **3** the methyl groups at $\delta_{\rm H}$ 1.60 (H_3-13) and 1.59 (H_3-14) showed correlations with the carbonyl carbon at $\delta_{\rm C}$ 202.8 (C-3); the methyl group at $\delta_{\rm H}$ 1.59 displayed additional correlations with carbons at δ_{C} 84.6 (C-2) and δ_C 172.4 (C-1). The latter carbon (C-1) showed further correlations with an OMe group at δ_H 3.89 (H₃-12) and a methine proton at δ_H 5.67. The methine proton (H-6) was attached to a carbon at δ_C 102.0 (C-6) and displayed further correlations with carbons at δ_C 192.0 (C-5) and 81.0 (C-4) ppm. The methyl group at δ_H 1.60 (H₃-13) displayed an additional long-range correlation with the latter carbon (C-4). Similar correlations indicated in Table 1 were observed in compound **4**.

Finally the relative configurations of the C-2 and C-4 stereogenic centers of compounds 3 and 4 were assigned after reduction of the respective hydroperoxide groups with $P(OMe)_3$ and comparison of the spectroscopic data and optical rotation of each reaction product with those of 1 and 2, respectively. Based on these results the relative configuration of compound 3 is *trans*, like that of 1, and the relative configuration of compound 4 is *cis*, as is that of 2. Similarly to phomaligadiones, phomaligin A (7) oxidized on standing. In attempting to purify a sample of 7, which had been previously purified and stored at 0°C for several months, only 30% was recovered; alcohols 1 and 2, (10%) and 8 (30%) were isolated, along with several minor unidentified products. A rearrangement of 7 to 8, followed by oxidation and hydrolysis of the NHCH₂CH₂OH group, would explain the spontaneous transformation of 7 to 1 and 2.

Following the characterization of the oxidation products of phomaligadiones 5 and 6, their reaction with diazomethane was examined. The reaction products were identified as the methyl ethers 9 and 10 and the adduct 11. Methyl ethers 9 and 10 were initially characterized by ¹H NMR spectroscopy as a mixture (9/10, 3:1). The ¹H NMR spectrum of this mixture showed the expected resonances for two isomeric methyl ethers; however, the position of the newly introduced (O)Me

D	9			11		
Position no.	δ _H	δ _c	НМВС	δ _H	δ _c	НМВС
1	<u> </u>	172.7		166.1		
2		112.8	_	116.8		
3		163.3	_	194.0		
4	_	79.2	_	82.6		
5	_	195.4	_	191.5		
6	5.42, s	96.1	C-1, C-4, C-5	_	123.5	
7	_	175.6	_	175.8		
8	2.45, ddq	40.1	C-7, C-9, C-10, C-11	2.50, ddq	40.0	C-7, C-9, C-10, C-11
	(6.8, 6.8, 7.0)			(6.8, 6.8, 7.0)		
9	1.72, m	26.6	C-7, C-8, C-10, C-11	1.70, m	26.7	C-7, C-8, C-10, C-11
	1.47, m			1.49, m		
10	0.96, t	11.3	C-7, C-8, C-9, C-11	0.96, t	11.4	C-7, C-8, C-9, C-11
	(7.5)			(7.5)		
11	1.14, d	16.3	C-7, C-8, C-9, C-10	1.16, d	16.4	C-7, C-8, C-9, C-10
	(7.0)			(7.)		
12	3.77, s	56.2	C-1	3.90, s	61.9	C-1
13	1.84, s	24.0	C-3, C-4, C-5	1.50, s	23.7	C-3, C-4, C-5
14	1.59, s	9.5	C-1, C-2, C-3	1.90, s	9.0	C-1, C-2, C-3
15	3.74, s	61.2	C-3	3.41, d	40.1	
Others	_			(4.1)		
				12.6, br s	_	

Table 2. NMR data^a for compounds 9 and 11 in CDCl₃.

"Data recorded at 500 (¹H NMR) and 125.8 (¹³C NMR) MHz, respectively. Values in parenthesis refer to J_{HH} in Hz.

group in each isomer could not be determined unambiguously (i.e., C-3 or C-5). Further separation of the mixture of 9 and 10 yielded sufficient amounts of 9 to allow the unambiguous assignment of this structure. Firstly, the ¹H NMR spectrum of 9 (Table 2) displayed the resonances seen for the major product present in the initial mixture of 9 and 10, that is, a sec-butyl group (9 hydrogens) in addition to two Me groups ($\delta_{\rm H}$ 1.84 and 1.59), two Me(O) groups ($\delta_{\rm H}$ 3.74 and 3.77), and a vinylic proton at $\delta_{\rm H}$ 5.42. The proton decoupled ¹³C NMR spectrum (Table 2) of compound 9 showed the expected 15 resonances, which corroborated the presence of $2 \times Me$, $2 \times Me(O)$, and a sec-butyl group, as indicated in the ¹H NMR spectrum. In addition, signals attributable to four carbonyl groups or equivalents (δ_{C} 195.4, 175.6, 172.7, and 163.3), two *sp*² carbons (δ_{C} 112.8 and 96.1), and one oxygenated quaternary carbon ($\delta_{\rm C}$ 79.2) confirmed that 9 was a methylated derivative of 5/6. The EIMS of compound 9 revealed the molecular ion expected for $C_{15}H_{22}O_5$ at m/z 282. Finally, the structure of compound 9 was unambiguously assigned on the basis of its HMBC spectral data (Table 2). The location of the Me(O) at C-3 and not at C-5 was deduced from the long-range correlations of C- 3 (δ_{C} 163.3) with the methyl groups at δ_H 3.74 (H₃-15), δ_H 1.84 (H₃-13), and $\delta_{\rm H}$ 1.59 (H₃-14), as well as the correlation of the lowest field carbonyl carbon ($\delta_{\rm C}$ 195.4, C-5) with the methyl group at $\delta_{\rm H}$ 1.84 (H₃-13). Although insufficient sample was recovered to obtain complete spectroscopic data for 10, the ¹H NMR data attributable to the minor isomer of the methylation product mixture indicated the proposed structure.

The major product of the reaction of phomaligationes 5/6with diazomethane was a bright yellow oil (11). The HREIMS of product 11 suggested the molecular formula $C_{15}H_{22}N_2O_5$, consistent with the formation of an adduct of 5/6 (C₁₄H₂₀O₅) with CH₂N₂. Analysis of the ¹H NMR spectrum of 11 showed the expected resonances for the cyclohexenedione substituents also present in the starting material (5/6): one sec-butyl group (9 hydrogens), two Me groups ($\delta_{\rm H}$ 1.90 and 1.50), and one Me(O) group (δ_H 3.90). Two new signals at δ_H 3.41 (d, 3H) and 12.6 (bs, 1H, D₂O exchangeable) were attributed to the addition of CH_2N_2 to cyclohexenediones 5/6, resulting in a = N-NH-Me substituent. The locations of the $2 \times Me$, MeO, sec-butyl-C(=O)O, and 2 × C=O groups on the cyclohexenedione were determined to be identical to those observed in 5/6, by analysis of the proton decoupled ¹³C NMR and HMBC spectral data (Table 2). Consequently, the N-methylhydrazone (=N-NH-Me) could only be located at C-6 (δ_{C} 123.5). In this way the structure of the major product was established as adduct 11.4

The products of the reaction of phomaligadiones 5/6 with diazomethane allowed further conclusions with respect to metabolites produced by *P. wasabiae.* It was reported that a compound named wasabidienone A, on treatment with diazomethane, yielded two Me ethers (1:1) having structures 9 and 10 (8). Later on, analysis of the p-nitrobenzoate derivative of wasabidienone A by X-ray crystallography allowed the assignment of its stereogenic centers (9). Based on these results (8, 9) the tautomeric forms 12 and 13 were assigned to wasabidienone A. Furthermore, it was reported that wasabidienone A on standing on a TLC plate decomposed to a brownish material, which was identified as a mixture of compound 14 (purple) and 15 (colorless) (10). The structure of compound 15, including absolute configuration, was determined by X-ray crystallography (10). The purple compound 14 had been pre-

viously reported as a metabolite of P. wasabiae (11⁵ but, interestingly, 15 was never reported to be present in cultures of P. wasabiae. The NMR, IR, and optical rotation data reported for compound 15 are in close agreement with data obtained for phomaligol A (1) (1). In conclusion, wasabidienone A and phomaligadiones appear to be the same compound, existing, at least in CDCl₃, as a tautomeric mixture, described more accurately as 5 and 6, since the resonances corresponding to C-2 in the former, and C-6 in the latter, are clearly due to sp^3 carbons (1), and not sp^2 carbons as in 12 and 13. The data obtained for methyl ether derivatives 9 and 10 are in complete agreement with data reported previously (8); however, Soga et al. did not report adduct 11 (8). Because the conditions used to prepare these methyl ethers were not specified in that report (8), it is not possible to comment on those results. Our previous work (3) indicated that some of the compounds isolated from cultures of P. lingam were also present in cultures of P. wasabiae. Now it is clear that the profile of metabolites common to P. wasabiae and P. lingam is much broader; not only phomaligols (1, 2) and phomaligationes (5, 6) are present in liquid cultures of both species, but also wasabidienones B_0 (16) and B_1 (17) (12) were present in similar liquid cultures.

Biogenetically, metabolites 1, 2, 5–8 may derive from a pentaketide that is further methylated and oxidized; however, the results reported here indicate that metabolites 1 and 2 can also result from non-enzymatic oxidation of 5–7.⁶ Furthermore, this work has uncovered a relationship for metabolites 1, 2, 7, and 8; that is, 8 could result from a non-enzymatic rearrangement of 7, and could then be further oxidized to 1 and 2 ($7 \rightarrow 8 \rightarrow 1 + 2$). In fact, it is likely that the reddish pigments characteristic in liquid cultures of avirulent blackleg isolates (13) are most likely oxidation products of the metabolites 1–8 and (or) related ones such as 14. The phytotoxicity of these metabolites to canola susceptible to blackleg was evaluated; phomaligols 1 and 2 did not cause obvious lesions even at relatively high concentrations (10⁻³ M), whereas 7 and 8 caused only slight lesions at similar concentrations.

Experimental

General

All chemicals were purchased from Aldrich Chemical Company, Inc., Madison, Wis. All solvents were HPLC grade and used as such. Preparative TLC: Merck Kieselgel 60 F_{254} , 20 × 20 cm × 0.25 mm; analytical TLC (Merck Kieselgel 60 F_{254} , aluminum sheets) 5 × 2 cm × 0.2 mm; compounds were visualized by exposure to UV and by dipping the plates in a 5% aqueous (w/v) phosphomolybdic acid solution containing a trace of ceric sulfate and 4% (v/v) H_2SO_4 , followed by heating at 200°C. Flash column chromatography: Merck silica gel, grade 60, mesh size 230–400, 60 Å. NMR spectra were recorded on a Bruker AMX 500 or AM 300 spectrometer; δ

⁴ No literature precedent was found for this mode of reaction of diazomethane (T. H. Black, Aldrichimica Acta, 16, 3 (1983)). It may be a simple protonation of diazomethane, followed by enolate attack on the electrophilic terminal nitrogen.

⁵ In the course of this work a reddish polar material was isolated, but due to further decomposition, its structure could not be assigned.

⁶ The only indication that enzymatic oxidation might occur arises from detection of 1 and 2 in 2–3-day-old cultures, while 5/6 accumulated in 7–9-day-old cultures.

Pedras

values were referenced to $CHCl_3$ (7.24 ppm) for ¹H (500 MHz), and referenced to $CDCl_3$ (77.0 ppm) for ¹³C (125.8 MHz). Mass spectra (MS) were obtained on a VG 70-250 SEQ hybrid mass spectrometer or on a Finnigan Mat model 4500 mass spectrometer (high resolution (HR), electron impact (EI), fast atom bombardment (FAB), or chemical ionization (CI) with ammonia as carrier gas), employing a solid probe in both cases.

Air oxidation of phomaligadiones A (5a/5b) and B (6)

A solution of phomaligadiones A (**5a/5b**) and B (**6**) (28 mg in CHCl₃–MeOH, 1:1, 1 mL) was left standing for 4 weeks at room temperature. Preparative TLC (CH₂Cl₂–MeOH, 97:3, multiple development) of that mixture gave phomaligols 1 (2 mg; R_f 0.42, hexane–EtOAc, 1:1) and 2(1 mg; R_f 0.28, hexane–EtOAc, 1:1), hydroperoxides 3 (3 mg; R_f 0.46, hexane–EtOAc, 1:1) and 4 (1 mg; R_f 0.34, hexane–EtOAc, 1:1), and a mixture of phomaligadiones **5a/5b** and **6** (12 mg; R_f 0.60, hexane–EtOAc, 1:1).

Reaction of phomaligationes A(5a/5b) and B(6) with diazomethane

Diazomethane in ether was added (excess) to a stirred solution of phomaligadiones A (**5a/5b**) and B (**6**) (8 mg in CH₂Cl₂, 1 mL) at room temperature. After 30 min the solvents were removed with a stream of nitrogen and the reaction products were separated by preparative TLC (CH₂Cl₂-MeOH, 97:3, developed twice) to give a mixture of compounds **9** and **10** in one band (2 mg, 3:1) and adduct **11** (3.2 mg). Compounds **9** and **11** were further purified separately by preparative TLC (hexane-EtOAc, 7:3, multiple elution) to yield pure **9** (1.7 mg; R_f 0.75, hexane-EtOAc, 1:1), **10** (0.5 mg; R_f 0.5, hexane-EtOAc, 1:1), and **11** (2.1 mg; R_f 0.75, hexane-EtOAc, 1:1).

Reduction of hydroperoxides 3 and 4

 $P(OMe)_3$ (2 mg in CH₂Cl₂, 1 mL) was added to a solution of the hydroperoxide **3** (2.4 mg in CH₂Cl₂, 1 mL) at room temperature. The solvent was immediately evaporated and the reaction product was purified by preparative TLC (hexane-EtOAc, 1:1, multiple elution) to give a pure compound (1.5 mg), identical to phomaligol A (1) in all respects, including optical rotation. Similar reaction with hydroperoxide **4** yielded a pure compound (1.1 mg), identical to phomaligol A₁ (2).

Phomaligol A hydroperoxide (3): colorless oil; HRCIMS m/z (relative intensity) measured: 301.1282 (301.1287 calcd. for $C_{14}H_{21}O_7$); FABMS m/z (relative intensity): 301 ([M+1]⁺ 100; ¹H and ¹³C NMR, see Table 1.

Phomaligol A₁ hydroperoxide (4): colorless oil; HRCIMS m/z (relative intensity) measured: 301.1283 (301.1287 calcd. for C₁₄H₂₁O₇); FABMS m/z (relative intensity): 301 ([M+1]⁺ 100; ¹H and ¹³C NMR, see Table 1.

Compound 9: light yellow film; ¹H NMR (CDCl₃) δ :5.44(s), 3.88(s), 3.72(s), 2.45 (ddq, J = 6.8, 7.0, 7.0 Hz), 1.84(s) 1.72(m), 1.59(s), 1.47(m), 1.13(d, J = 7.0 Hz), 0.90 (t, J = 7.5).

Compound 10: light yellow oil; EIMS m/z (relative intensity): 282 ([M]⁺, 9%), 198 (20%), 155 (30%); ¹H and ¹³C NMR, see Table 2.

Adduct 11: yellow oil; HREIMS m/z (relative intensity) measured: 310.1529 (310.1526 calcd. for $C_{15}H_{22}N_2O_5$); EIMS m/z (relative intensity): 310 ([M]⁺, 15%), 209 (40%), 154 (28%); ¹H and ¹³C NMR, see Table 2.

Acknowledgments

I gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada and the University of Saskatchewan. I would like to thank Mr. B. Chatson, Plant Biotechnology Institute, Saskatoon, for NMR spectral determinations.

References

- M.S.C. Pedras, V.M. Morales, and J.L. Taylor. Tetrahedron, 49, 8317 (1993).
- M.S.C. Pedras, V.M. Morales, and J.L. Taylor. Phytochemistry, 36, 1315 (1994).
- M.S.C. Pedras, J.L. Taylor, and V.M. Morales. Phytochemistry, 37, 1215 (1995).
- 4. M.S.C. Pedras. Rev. Latinoam. de Quim. In press.
- 5. R.K. Gugel and G.A. Petrie. Can. J. Plant Pathol. 14, 36 (1992).
- A. Bax and M.F. Summers. J. Am. Chem. Soc. 108, 2093, (1986).
- 7. A. Bax and S. Subramanian. J. Magn. Reson. 67, 565 (1986).
- 8. O. Soga, H. Iwamoto, S. Date, T. Watanabe, K. Tanaka, K.
- Hate, A. Takuwa, and M. Nakayama. Chem. Lett. 339 (1984).
 O. Soga, H. Iwamoto, A. Takuwa, H. Nozaki, J. Kuramoto, and M. Nakayama. Agric. Biol. Chem. 51, 283 (1987).
- O. Soga, H. Iwamoto, K. Hata, R. Maeba, A. Takuwa, T. Fujiwara, Y. Hsu, and M. Nakayama. Agric. Biol. Chem. 52, 865 (1988).
- O. Soga. Z. Naturforsch. B: Anorg. Chem. Org. Chem. 35B, 1497 (1980).
- O. Soga, H. Iwamoto, A. Takuwa, T. Takata, Y. Tsugiyama, K. Hamada, T. Fujiwara, and M. Nakayama. Chem. Lett. 1535 (1988).
- 13. R.L. Gabrielson. Seed Sci. Technol. 11, 749 (1983).